Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(15): 4033-8, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27001852

RESUMO

More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List-6% of all these highly threatened species-likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world's most imperiled fauna.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Mamíferos , Animais , Biodiversidade , Ilhas
2.
Physiology (Bethesda) ; 30(5): 349-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26328880

RESUMO

The incidence of cardiovascular disease in humans is more than three times that of many wild and domestic mammals despite nearly identical heart morphologies and responses to exercise. A survey of mammalian species from 0.002-kg shrews to 43,000-kg whales shows that the human heart is more dog-like than cat-like and that neither body size nor longevity accounts for the relative vulnerability to cardiovascular disease. Rather, a major difference is daily activity patterns, which may underlie the comparatively healthy hearts of wild mammals.


Assuntos
Ciclos de Atividade , Comportamento Animal , Cardiomegalia Induzida por Exercícios , Doenças Cardiovasculares/prevenção & controle , Exercício Físico , Coração/fisiopatologia , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Nível de Saúde , Coração/inervação , Hemodinâmica , Humanos , Atividade Motora
3.
Mol Phylogenet Evol ; 83: 72-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462995

RESUMO

Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders.


Assuntos
Evolução Biológica , Filogenia , Rajidae/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , Fósseis , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Conserv Biol ; 29(1): 133-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25065901

RESUMO

Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well-known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well-known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well-known and little-known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km(2) and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km(2) and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands.


Assuntos
Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais , Ilhas , Mamíferos/fisiologia , Animais , Embriófitas/fisiologia , Geografia , Invertebrados/fisiologia , Modelos Lineares , Modelos Biológicos , Análise Espacial , Vertebrados/fisiologia
5.
Conserv Biol ; 28(4): 1100-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24628442

RESUMO

Although wildlife conservation actions have increased globally in number and complexity, the lack of scalable, cost-effective monitoring methods limits adaptive management and the evaluation of conservation efficacy. Automated sensors and computer-aided analyses provide a scalable and increasingly cost-effective tool for conservation monitoring. A key assumption of automated acoustic monitoring of birds is that measures of acoustic activity at colony sites are correlated with the relative abundance of nesting birds. We tested this assumption for nesting Forster's terns (Sterna forsteri) in San Francisco Bay for 2 breeding seasons. Sensors recorded ambient sound at 7 colonies that had 15-111 nests in 2009 and 2010. Colonies were spaced at least 250 m apart and ranged from 36 to 2,571 m(2) . We used spectrogram cross-correlation to automate the detection of tern calls from recordings. We calculated mean seasonal call rate and compared it with mean active nest count at each colony. Acoustic activity explained 71% of the variation in nest abundance between breeding sites and 88% of the change in colony size between years. These results validate a primary assumption of acoustic indices; that is, for terns, acoustic activity is correlated to relative abundance, a fundamental step toward designing rigorous and scalable acoustic monitoring programs to measure the effectiveness of conservation actions for colonial birds and other acoustically active wildlife.


Assuntos
Charadriiformes/fisiologia , Conservação dos Recursos Naturais/métodos , Vocalização Animal , Animais , Densidade Demográfica , São Francisco
6.
Conserv Biol ; 28(5): 1282-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24661307

RESUMO

Seabirds are the most threatened group of marine animals; 29% of species are at some risk of extinction. Significant threats to seabirds occur on islands where they breed, but in many cases, effective island conservation can mitigate these threats. To guide island-based seabird conservation actions, we identified all islands with extant or extirpated populations of the 98 globally threatened seabird species, as recognized on the International Union for Conservation of Nature Red List, and quantified the presence of threatening invasive species, protected areas, and human populations. We matched these results with island attributes to highlight feasible island conservation opportunities. We identified 1362 threatened breeding seabird populations on 968 islands. On 803 (83%) of these islands, we identified threatening invasive species (20%), incomplete protected area coverage (23%), or both (40%). Most islands with threatened seabirds are amenable to island-wide conservation action because they are small (57% were <1 km(2) ), uninhabited (74%), and occur in high- or middle-income countries (96%). Collectively these attributes make islands with threatened seabirds a rare opportunity for effective conservation at scale.


Assuntos
Distribuição Animal , Aves/fisiologia , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Biodiversidade , Espécies Introduzidas , Ilhas
7.
Sci Data ; 11(1): 33, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177174

RESUMO

We initiated a tagging program in 2004 to determine the large-scale and long-term movement patterns of three species of Mobulid Ray (Mobula mobular, M. munkiana, M. thurstoni). Between 2004 and 2014 we deployed 48 pop-up archival (PAT) tags that recorded temperature, pressure, and light level. Pressure and light level records were then used to calculate animal depth and geolocation. Transmitted and when available recovered raw data files from successful deployments (n = 45) were auto-ingested from the manufacturer into the United States Animal Telemetry Network's (ATN) Data Assembly Center (DAC). Through the ATN DAC, all necessary metadata were compiled, dataset was prepped for release, and derived geolocation trajectories (n = 43) were visualized within their public facing data portal. These data and the full metadata records are available for download from the ATN portal as well as permanently archived under the DataONE Research Workspace member node.

8.
MethodsX ; 9: 101599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34917491

RESUMO

The seabird meta-population viability model (mPVA) uses a generalized approach to project abundance and quasi-extinction risk for 102 seabird species under various conservation scenarios. The mPVA is a stage-structured projection matrix that tracks abundance of multiple populations linked by dispersal, accounting for breeding island characteristics and spatial distribution. Data are derived from published studies, grey literature, and expert review (with over 500 contributions). Invasive species impacts were generalized to stage-specific vital rates by fitting a Bayesian state-space model to trend data from Islands where invasive removals had occurred, while accounting for characteristics of seabird biology, breeding islands and invasive species. Survival rates were estimated using a competing hazards formulation to account for impacts of multiple threats, while also allowing for environmental and demographic stochasticity, density dependence and parameter uncertainty.•The mPVA provides resource managers with a tool to quantitatively assess potential benefits of alternative management actions, for multiple species•The mPVA compares projected abundance and quasi-extinction risk under current conditions (no intervention) and various conservation scenarios, including removal of invasive species from specified breeding islands, translocation or reintroduction of individuals to an island of specified location and size, and at-sea mortality amelioration via reduction in annual at-sea deaths.

9.
Mar Environ Res ; 174: 105532, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032818

RESUMO

The Eastern Pacific hawksbill sea turtle population is one of the most endangered of all sea turtle species. Here, we examine the foraging ecology of 47 hawksbill turtles (40.5-90.3 cm CCL, mean = 54.1 ± 10.1 cm) around Isla San José, Gulf of California, Mexico by integrating information from passive acoustic telemetry, behavior recordings, fecal analysis, and habitat surveys. Tagged hawkbill turtles exhibited high site fidelity over months and years (tracking duration 1-1490 days, mean = 255 ± 373 days) to the location and benthic habitat where individuals were initially caught. Diet was dominated by benthic invertebrates and algae including sponges, algae, tunicates, and mangrove roots. The mean percent cover of these benthic food items was significantly greater in the mangrove estuary than in adjacent rocky and sandy reef habitats. The Isla San José foraging ground is a high-use area for hawksbills and should be granted national protection status.


Assuntos
Tartarugas , Animais , California , Ecologia , Ecossistema , México
10.
Sci Rep ; 12(1): 13391, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948555

RESUMO

Islands are global hotspots for biodiversity and extinction, representing ~ 5% of Earth's land area alongside 40% of globally threatened vertebrates and 61% of global extinctions since the 1500s. Invasive species are the primary driver of native biodiversity loss on islands, though eradication of invasive species from islands has been effective at halting or reversing these trends. A global compendium of this conservation tool is essential for scaling best-practices and enabling innovations to maximize biodiversity outcomes. Here, we synthesize over 100 years of invasive vertebrate eradications from islands, comprising 1550 eradication attempts on 998 islands, with an 88% success rate. We show a significant growth in eradication activity since the 1980s, primarily driven by rodent eradications. The annual number of eradications on islands peaked in the mid-2000s, but the annual area treated continues to rise dramatically. This trend reflects increases in removal efficacy and project complexity, generating increased conservation gains. Our synthesis demonstrates the collective contribution of national interventions towards global biodiversity outcomes. Further investment in invasive vertebrate eradications from islands will expand biodiversity conservation while strengthening biodiversity resilience to climate change and creating co-benefits for human societies.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Mudança Climática , Humanos , Espécies Introduzidas , Vertebrados
11.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984887

RESUMO

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

12.
Proc Natl Acad Sci U S A ; 105(10): 3800-4, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18308929

RESUMO

It is widely recognized that trophic interactions structure ecological communities, but their effects are usually only demonstrated on a small scale. As a result, landscape-level documentations of trophic cascades that alter entire communities are scarce. Islands invaded by animals provide natural experiment opportunities both to measure general trophic effects across large spatial scales and to determine the trophic roles of invasive species within native ecosystems. Studies addressing the trophic interactions of invasive species most often focus on their direct effects. To investigate both the presence of a landscape-level trophic cascade and the direct and indirect effects of an invasive species, we examined the impacts of Norway rats (Rattus norvegicus) introduced to the Aleutian Islands on marine bird densities and marine rocky intertidal community structures through surveys conducted on invaded and rat-free islands throughout the entire 1,900-km archipelago. Densities of birds that forage in the intertidal were higher on islands without rats. Marine intertidal invertebrates were more abundant on islands with rats, whereas fleshy algal cover was reduced. Our results demonstrate that invasive rats directly reduce bird densities through predation and significantly affect invertebrate and marine algal abundance in the rocky intertidal indirectly via a cross-community trophic cascade, unexpectedly changing the intertidal community structure from an algae- to an invertebrate-dominated system.


Assuntos
Ecossistema , Eucariotos/fisiologia , Invertebrados/fisiologia , Movimentos da Água , Alaska , Animais , Aves/fisiologia , Geografia , Dinâmica Populacional , Comportamento Predatório , Ratos
13.
Sci Rep ; 11(1): 132, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420295

RESUMO

Munk's pygmy devil rays (Mobula munkiana) are medium-size, zooplanktivorous filter feeding, elasmobranchs characterized by aggregative behavior, low fecundity and delayed reproduction. These traits make them susceptible to targeted and by-catch fisheries and are listed as Vulnerable on the IUCN Red List. Multiple studies have examined fisheries impacts, but nursery areas or foraging neonate and juvenile concentrations have not been examined. This study describes the first nursery area for M. munkiana at Espiritu Santo Archipelago, Mexico. We examined spatial use of a shallow bay during 22 consecutive months in relation to environmental patterns using traditional tagging (n = 95) and acoustic telemetry (n = 7). Neonates and juveniles comprised 84% of tagged individuals and their residency index was significantly greater inside than outside the bay; spending a maximum of 145 consecutive days within the bay. Observations of near-term pregnant females, mating behavior, and neonates indicate an April to June pupping period. Anecdotal photograph review indicated that the nursery area is used by neonates and juveniles across years. These findings confirm, for the first time, the existence of nursery areas for Munk's pygmy devil rays and the potential importance of shallow bays during early life stages for the conservation of this species.


Assuntos
Ecossistema , Rajidae/crescimento & desenvolvimento , Animais , California , Feminino , Masculino , México , Estações do Ano
14.
Sci Rep ; 11(1): 5395, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686134

RESUMO

Eleven years after invasive Norway rats (Rattus norvegicus) were eradicated from Hawadax Island, in the Aleutian Islands, Alaska, the predicted three-level trophic cascade in the rocky intertidal, with native shorebirds as the apex predator, returned, leading to a community resembling those on rat-free islands with significant decreases in invertebrate species abundances and increases in fleshy algal cover. Rats had indirectly structured the intertidal community via their role as the apex predator in a four-level trophic cascade. Our results are an excellent example of an achievable and relatively short-term community-level recovery following removal of invasive animals. These conservation successes are especially important for islands as their disproportionately high levels of native biodiversity are excessively threatened by invasive mammals.


Assuntos
Biodiversidade , Espécies Introduzidas , Alaska , Animais , Ilhas , Ratos
15.
PLoS One ; 15(3): e0229798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130277

RESUMO

Climate change is exacerbating drought and water stress in several global regions, including some parts of the United States. During times of drought in the U.S., municipal governments, private water suppliers and non-profits commonly deploy advocacy campaigns and incentive programs targeting reductions in residential water use through actions including: repairing leaks, shutting off taps, and installing new water-saving appliances. We asked whether these campaigns have the potential to alleviate water stress during drought at the county scale by estimating the potential impact of full adoption of such actions. In 2010, we show that the maximum potential use reductions from these residential actions may only alleviate water stress in 6% (174) of U.S. counties. The potential impact of domestic programs is limited by the relative dominance of agriculture water withdrawal, the primary water user in 50% of U.S. counties. While residential actions do achieve some water demand savings, they are not sufficient to alter water stress in the majority of the continental U.S. We recommend redirecting advocacy efforts and incentives to individual behaviors that can influence agricultural water use.


Assuntos
Agricultura/métodos , Mudança Climática , Conservação dos Recursos Hídricos , Secas , Abastecimento de Água , Estados Unidos
16.
Ecol Evol ; 10(12): 5184-5196, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607142

RESUMO

Disparities remain in the representation of marginalized students in STEM. Classroom-based experiential learning opportunities can increase student confidence and academic success; however, the effectiveness of extending learning to outdoor settings is unknown. Our objectives were to examine (a) demographic gaps in ecology and evolutionary biology (EEB) major completion, college graduation, and GPAs for students who did and did not enroll in field courses, (b) whether under-represented demographic groups were less likely to enroll in field courses, and (c) whether under-represented demographic groups were more likely to feel increased competency in science-related tasks (hereafter, self-efficacy) after participating in field courses. We compared the relationships among academic success measures and demographic data (race/ethnicity, socioeconomic status, first-generation, and gender) for UC Santa Cruz undergraduate students admitted between 2008 and 2019 who participated in field courses (N = 941 students) and who did not (N = 28,215 students). Additionally, we administered longitudinal surveys to evaluate self-efficacy gains during field-based versus classroom-based courses (N = 570 students). We found no differences in the proportion of students matriculating at the university as undecided, proposed EEB, or proposed other majors across demographic groups. However, five years later, under-represented students were significantly less likely to graduate with EEB degrees, indicating retention rather than recruitment drives disparities in representation. This retention gap is partly due to a lower rate of college completion and partly through attrition to other majors. Although under-represented students were less likely to enroll in field courses, field courses were associated with higher self-efficacy gains, higher college graduation rates, higher EEB major retention, and higher GPAs at graduation. All demographic groups experienced significant increases in self-efficacy during field-based but not lecture-based courses. Together, our findings suggest that increasing the number of field courses and actively facilitating access to students from under-represented groups can be a powerful tool for increasing STEM diversity.

17.
Zoonoses Public Health ; 67(1): 70-78, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677251

RESUMO

BACKGROUND: Toxoplasma gondii is a zoonotic parasite that can have severe implications for human health. Acutely infected cats shed environmentally resistant T. gondii oocysts in their faeces that contaminate soil, and soil can serve as a reservoir of infection for humans. Free-roaming domestic cats are thought to play an important role in environmental contamination with T. gondii, but few studies have directly measured the direct contribution of free-roaming cats to T. gondii in soil. METHODS: Our goals were to determine whether T. gondii soil contamination occurs in public areas with free-roaming cat colonies in central California and examine spatial and temporal variation in soil contamination. We initially performed spiking experiments to compare the limit of T. gondii detection in soil using three conventional nested PCR assays and one real-time quantitative PCR. The nested PCR targeting the internal transcribed spacer (ITS-1) of the small subunit ribosomal RNA was the most sensitive assay, with a limit of detection between 20 and 200 oocysts per gram of soil. We applied the ITS1 PCR assay on soil from sites in city and state parks, public playgrounds and community gardens in central California, USA. Samples were collected during spring, summer and fall and in sites located along the coast and inland. RESULTS: We detected and sequence-confirmed T. gondii in 5.6% of all of our soil sub-samples, but with large seasonal and spatial variation in soil contamination: we only detected T. gondii during fall and only in coastal sites (44.3% soil prevalence), despite similar sampling intensity across space and time. CONCLUSIONS: Our results suggest that free-roaming cat colonies are an important source of T. gondii in spaces where people recreate and grow food and that soil contamination is highly seasonal and spatially variable. Management of free-roaming cats could prevent T. gondii infections by reducing environmental contamination with this zoonotic pathogen.


Assuntos
Doenças do Gato/parasitologia , Estações do Ano , Solo/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/parasitologia , Animais , California , Doenças do Gato/epidemiologia , Gatos , Fezes/parasitologia , Humanos , Oocistos , Parques Recreativos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Instalações Esportivas e Recreacionais , Toxoplasmose Animal/epidemiologia , Zoonoses/epidemiologia
18.
Ecology ; 90(3): 742-53, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19341144

RESUMO

We examine how ocean climate variability influences the reproductive phenology and demography of the seabird Cassin's Auklet (Ptychoramphus aleuticus) across approximately 2500 km of its breeding range in the oceanographically dynamic California Current System along the west coast of North America. Specifically, we determine the extent to which ocean climate conditions and Cassin's Auklet timing of breeding and breeding success covary across populations in British Columbia, central California, and northern Mexico over six years (2000-2005) and test whether auklet timing of breeding and breeding success are similarly related to local and large-scale ocean climate indices across populations. Local ocean foraging environments ranged from seasonally variable, high-productivity environments in the north to aseasonal, low-productivity environments to the south, but covaried similarly due to the synchronizing effects of large-scale climate processes. Auklet timing of breeding in the southern population did not covary with populations to the north and was not significantly related to local oceanographic conditions, in contrast to northern populations, where timing of breeding appears to be influenced by oceanographic cues that signal peaks in prey availability. Annual breeding success covaried similarly across populations and was consistently related to local ocean climate conditions across this system. Overall, local ocean climate indices, particularly sea surface height, better explained timing of breeding and breeding success than a large-scale climate index by better representing heterogeneity in physical processes important to auklets and their prey. The significant, consistent relationships we detected between Cassin's Auklet breeding success and ocean climate conditions across widely spaced populations indicate that Cassin's Auklets are susceptible to climate change across the California Current System, especially by the strengthening of climate processes that synchronize oceanographic conditions. Auklet populations in the northern and central regions of this ecosystem may be more sensitive to changes in the timing and variability of ocean climate conditions since they appear to time breeding to take advantage of seasonal productivity peaks.


Assuntos
Charadriiformes/fisiologia , Clima , Ecossistema , Oviposição/fisiologia , Comportamento Predatório/fisiologia , Animais , Cruzamento , Demografia , Feminino , Efeito Estufa , Masculino , Oceanos e Mares , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
19.
PLoS Negl Trop Dis ; 13(2): e0007040, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763304

RESUMO

Cats (Felis catus) are reservoirs of several pathogens that affect humans, including Toxoplasma gondii. Infection of pregnant women with T. gondii can cause ocular and neurological lesions in newborns, and congenital toxoplasmosis has been associated with schizophrenia, epilepsy, movement disorders, and Alzheimer's disease. We compared seroprevalence of T. gondii and risk factors in people on seven islands in Mexico with and without introduced cats to determine the effect of cat eradication and cat density on exposure to T. gondii. Seroprevalence was zero on an island that never had cats and 1.8% on an island where cats were eradicated in 2000. Seroprevalence was significantly higher (12-26%) on the five islands with cats, yet it did not increase across a five-fold range of cat density. Having cats near households, being male and spending time on the mainland were significant risk factors for T. gondii seroprevalence among individuals, whereas eating shellfish was protective. Our results suggest that cats are an important source of T. gondii on islands, and eradicating, but not controlling, introduced cats from islands could benefit human health.


Assuntos
Doenças do Gato/parasitologia , Ilhas , Controle da População , Toxoplasmose Animal/parasitologia , Toxoplasmose Congênita/prevenção & controle , Animais , Gatos , Feminino , Humanos , Gravidez , Saúde Pública
20.
PLoS One ; 14(3): e0212128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917126

RESUMO

Invasive alien species are a major threat to native insular species. Eradicating invasive mammals from islands is a feasible and proven approach to prevent biodiversity loss. We developed a conceptual framework to identify globally important islands for invasive mammal eradications to prevent imminent extinctions of highly threatened species using biogeographic and technical factors, plus a novel approach to consider socio-political feasibility. We applied this framework using a comprehensive dataset describing the distribution of 1,184 highly threatened native vertebrate species (i.e. those listed as Critically Endangered or Endangered on the IUCN Red List) and 184 non-native mammals on 1,279 islands worldwide. Based on extinction risk, irreplaceability, severity of impact from invasive species, and technical feasibility of eradication, we identified and ranked 292 of the most important islands where eradicating invasive mammals would benefit highly threatened vertebrates. When socio-political feasibility was considered, we identified 169 of these islands where eradication planning or operation could be initiated by 2020 or 2030 and would improve the survival prospects of 9.4% of the Earth's most highly threatened terrestrial insular vertebrates (111 of 1,184 species). Of these, 107 islands were in 34 countries and territories and could have eradication projects initiated by 2020. Concentrating efforts to eradicate invasive mammals on these 107 islands would benefit 151 populations of 80 highly threatened vertebrates and make a major contribution towards achieving global conservation targets adopted by the world's nations.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies Introduzidas/tendências , Animais , Biodiversidade , Espécies em Perigo de Extinção , Extinção Biológica , Ilhas , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA