Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146589

RESUMO

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Ornitina Carbamoiltransferase , Humanos , Substituição de Aminoácidos , Hiperamonemia/etiologia , Hiperamonemia/genética , Mutação de Sentido Incorreto/genética , Ornitina Carbamoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia
2.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37812589

RESUMO

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Assuntos
Encefalopatias , Microcefalia , Humanos , Criança , Saccharomyces cerevisiae/genética , Encefalopatias/genética , Microcefalia/genética , Genótipo , Serina
3.
Yeast ; 39(6-7): 354-362, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35706372

RESUMO

Meiotic mapping, a linkage-based method for analyzing the recombinant progeny of a cross, has long been a cornerstone of genetic research. The yeast Saccharomyces cerevisiae is a powerful system because it is possible to isolate and cultivate the four products (spores) of a single meiotic event. However, the throughput of this process has historically been limited by the process of identifying tetrads in a heterogeneous population of vegetative cells, tetrads, and dyads followed by manual separation (dissection) of the spores contained in a tetrad. To date, methods that facilitate high throughput characterization and isolation of meiotic progeny have relied on genetic engineering. Here, we characterize the ability of the fluorescent dye DiBAC4 (5) to stain yeast tetrads and dyads as well as to adhere to spores following bulk tetrad disruption. Applications include quantitative assays of sporulation rates and efficiency by flow cytometry as well as enrichment of intact tetrads, dyads, or disrupted spores by fluorescence-activated cell sorting  in strains that have not been genetically modified.


Assuntos
Meiose , Saccharomyces cerevisiae , Citometria de Fluxo/métodos , Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética
4.
PLoS Biol ; 17(3): e3000147, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30835725

RESUMO

Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.


Assuntos
Poliploidia , Saccharomyces cerevisiae/genética , Ásia , Cerveja , Europa (Continente) , Fermentação/fisiologia , Haplótipos/genética , Saccharomyces cerevisiae/classificação , Vinho
5.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091232

RESUMO

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Assuntos
Candida albicans/genética , Candidíase Bucal/genética , Orofaringe/microbiologia , Animais , Candida albicans/metabolismo , Candidíase/genética , Modelos Animais de Doenças , Células Epiteliais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Fenótipo , Trissomia/genética , Virulência
6.
Proc Natl Acad Sci U S A ; 115(40): E9333-E9342, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217891

RESUMO

Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by cross-overs. DNA double-strand break (DSB) formation and the resulting cross-overs are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ∼200 kb (∼35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (an ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a "roulette" process within clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we propose a model and discuss variations in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.


Assuntos
Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , Meiose , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cromossomos Fúngicos/genética , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
7.
J Inherit Metab Dis ; 43(4): 758-769, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32077105

RESUMO

Defects in serine biosynthesis resulting from loss of function mutations in PHGDH, PSAT1, and PSPH cause a set of rare, autosomal recessive diseases known as Neu-Laxova syndrome (NLS) or serine-deficiency disorders. The diseases present with a broad range of phenotypes including lethality, severe neurological manifestations, seizures, and intellectual disability. However, because L-serine supplementation, especially if started prenatally, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is medically actionable. Here, we describe a functional assay that leverages the evolutionary conservation of an enzyme in the serine biosynthesis pathway, phosphoserine aminotransferase, and the ability of the human protein-coding sequence (PSAT1) to functionally replace its yeast ortholog (SER1). Results from our quantitative, yeast-based assay agree well with clinical annotations and expectations based on the disease literature. Using this assay, we have measured the functional impact of the 199 PSAT1 variants currently listed in ClinVar, gnomAD, and the literature. We anticipate that the assay could be used to comprehensively assess the functional impact of all SNP-accessible amino acid substitution mutations in PSAT1, a resource that could aid variant interpretation and identify potential NLS carriers.


Assuntos
Anormalidades Múltiplas/genética , Encefalopatias/genética , Retardo do Crescimento Fetal/genética , Ictiose/genética , Deformidades Congênitas dos Membros/genética , Microcefalia/genética , Fosfoglicerato Desidrogenase/genética , Anormalidades Múltiplas/metabolismo , Encefalopatias/metabolismo , Retardo do Crescimento Fetal/metabolismo , Humanos , Ictiose/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Microcefalia/metabolismo , Mutação de Sentido Incorreto , Fenótipo , Fosfoglicerato Desidrogenase/deficiência , Saccharomyces cerevisiae/metabolismo , Serina/biossíntese
8.
Nat Methods ; 10(7): 671-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666411

RESUMO

Tetrad analysis has been a gold-standard genetic technique for several decades. Unfortunately, the need to manually isolate, disrupt and space tetrads has relegated its application to small-scale studies and limited its integration with high-throughput DNA sequencing technologies. We have developed a rapid, high-throughput method, called barcode-enabled sequencing of tetrads (BEST), that uses (i) a meiosis-specific GFP fusion protein to isolate tetrads by FACS and (ii) molecular barcodes that are read during genotyping to identify spores derived from the same tetrad. Maintaining tetrad information allows accurate inference of missing genetic markers and full genotypes of missing (and presumably nonviable) individuals. An individual researcher was able to isolate over 3,000 yeast tetrads in 3 h, an output equivalent to that of almost 1 month of manual dissection. BEST is transferable to other microorganisms for which meiotic mapping is significantly more laborious.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , DNA Fúngico/genética , Marcadores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Meiose/genética , Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 110(30): 12367-72, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23812752

RESUMO

Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the "fluffy" morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the "smooth" colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes.


Assuntos
Aneuploidia , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , Dosagem de Genes , Fenótipo
10.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36711904

RESUMO

Background: Pathogenic variants in PHGDH, PSAT1 , and PSPH cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable. Methods: Recently, our laboratory established a yeast-based assay for human PSAT1 function. We have now applied it at scale to assay the functional impact of 1,914 SNV-accessible amino acid substitutions. In addition to assaying the functional impact of individual variants in yeast haploid cells, we can assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results: Results of our assays of individual variants (in haploid yeast cells) agree well with clinical interpretations and protein structure-function relationships, supporting the use of our data as functional evidence under the ACMG interpretation guidelines. Results from our diploid assay successfully distinguish patient genotypes from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements (in haploid yeast cells) to accurately predict the biallelic function (in diploid yeast cells) of ~ 1.8 million allele combinations corresponding to potential human genotypes. Conclusions: Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of a rare disease.

11.
Proc Natl Acad Sci U S A ; 106(23): 9356-61, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19470480

RESUMO

Double-strand breaks (DSBs) in DNA are lethal unless repaired. Faithful repair requires processing of the DSB ends and interaction with intact homologous DNA, which can produce genetic recombinants. To determine the role of nucleases in DSB end-processing and joint molecule resolution, we studied recombination at the site of a single DSB, generated by induction of the I-SceI endonuclease, during meiosis of fission yeast lacking Rec12 (Spo11 homolog) and, hence, other DSBs. We find that in the presence of the MRN (Rad32-Rad50-Nbs1) complex efficient recombination requires Ctp1, the ortholog of the nuclease Sae2, but not the nuclease activity of MRN. In the absence of MRN, exonuclease 1 (Exo1) becomes the major nuclease required for efficient recombination. Our data indicate that MRN enables access of Ctp1 to the DSB but blocks access of Exo1. In our assay, the Rad16-Swi10 nuclease, required for nucleotide excision-repair, is required for efficient recombination, presumably to remove heterologous DNA at the end of the I-SceI cut site. Another nuclease, the Mus81-Eme1 Holliday junction resolvase, is required to generate crossovers accompanying gene conversion at the I-SceI cut site. Additional, previously published evidence indicates that these 5 nucleases play similar roles in wild-type fission yeast meiotic recombination and in the repair of spontaneous and damage-induced mitotic DSBs. We propose that in wild-type meiosis MRN, in conjunction with Ctp1, removes the covalently attached Rec12 protein from the DNA end, which is then resected by Ctp1 and other activities to produce the single-stranded DNA necessary for further steps of DSB repair.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Meiose , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Schizosaccharomyces/genética
12.
PLoS Genet ; 4(11): e1000267, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19023408

RESUMO

The fission yeast Schizosaccharomyces pombe Rec12 protein, the homolog of Spo11 in other organisms, initiates meiotic recombination by creating DNA double-strand breaks (DSBs) and becoming covalently linked to the DNA ends of the break. This protein-DNA linkage has previously been detected only in mutants such as rad50S in which break repair is impeded and DSBs accumulate. In the budding yeast Saccharomyces cerevisiae, the DSB distribution in a rad50S mutant is markedly different from that in wild-type (RAD50) meiosis, and it was suggested that this might also be true for other organisms. Here, we show that we can detect Rec12-DNA linkages in Sc. pombe rad50(+) cells, which are proficient for DSB repair. In contrast to the results from Sa. cerevisiae, genome-wide microarray analysis of Rec12-DNA reveals indistinguishable meiotic DSB distributions in rad50(+) and rad50S strains of Sc. pombe. These results confirm our earlier findings describing the occurrence of widely spaced DSBs primarily in large intergenic regions of DNA and demonstrate the relevance and usefulness of fission yeast studies employing rad50S. We propose that the differential behavior of rad50S strains reflects a major difference in DSB regulation between the two species--specifically, the requirement for the Rad50-containing complex for DSB formation in budding yeast but not in fission yeast. Use of rad50S and related mutations may be a useful method for DSB analysis in other species.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/química , Meiose , Recombinação Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
13.
PLoS Genet ; 3(8): e141, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17722984

RESUMO

Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located approximately 65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Intergênico/fisiologia , Meiose/genética , Schizosaccharomyces/genética , Southern Blotting , Mapeamento Cromossômico , Cromossomos Fúngicos , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia
14.
J Bacteriol ; 191(16): 5076-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542287

RESUMO

RecBCD and AddAB are bacterial enzymes that share similar helicase and nuclease activities and initiate repair of DNA double-strand breaks by homologous recombination. Examination of the phylogenetic distribution of AddAB and RecBCD revealed that one or the other complex is present in most sequenced bacteria. In addition, horizontal gene transfer (HGT) events involving addAB and recBCD appear to be common, with the genes encoding one complex frequently replacing those encoding the other. HGT may also explain the unexpected identification of archaeal addAB genes. More than 85% of addAB and recBCD genes are clustered on the genome, suggesting operon structures. A few organisms, including the Mycobacteria, encode multiple copies of these complexes of either the same or mixed classes. The possibility that the enzymatic activities of the AddAB and RecBCD enzymes promote their horizontal transfer is discussed, and the distribution of AddAB/RecBCD is compared to that of the RecU/RuvC resolvases. Finally, it appears that two sequence motifs, the Walker A box involved in ATP binding and an iron-sulfur-cysteine cluster, are present only in subsets of AddB proteins, suggesting the existence of mechanistically distinct classes of AddB.


Assuntos
Proteínas de Bactérias/genética , Exodesoxirribonuclease V/genética , Exodesoxirribonucleases/genética , Filogenia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/fisiologia , Biologia Computacional , Exodesoxirribonuclease V/classificação , Exodesoxirribonuclease V/fisiologia , Exodesoxirribonucleases/classificação , Exodesoxirribonucleases/fisiologia , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Recombinação Genética/genética
15.
Mol Microbiol ; 69(4): 994-1007, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18573180

RESUMO

Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection.


Assuntos
Proteínas de Bactérias/fisiologia , DNA Helicases/fisiologia , Exodesoxirribonucleases/fisiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Recombinases Rec A/fisiologia , Estômago/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Exodesoxirribonucleases/genética , Feminino , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Recombinases Rec A/genética , Recombinação Genética
16.
Genetics ; 179(3): 1157-67, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18562672

RESUMO

RecQ helicases are found in organisms as diverse as bacteria, fungi, and mammals. These proteins promote genome stability, and mutations affecting human RecQ proteins underlie premature aging and cancer predisposition syndromes, including Bloom syndrome, caused by mutations affecting the BLM protein. In this study we show that mutants lacking the Rqh1 protein of the fission yeast Schizosaccharomyces pombe, a RecQ and BLM homolog, have substantially reduced meiotic recombination, both gene conversions and crossovers. The relative proportion of gene conversions having associated crossovers is unchanged from that in wild type. In rqh1 mutants, meiotic DNA double-strand breaks are formed and disappear with wild-type frequency and kinetics, and spore viability is only moderately reduced. Genetic analyses and the wild-type frequency of both intersister and interhomolog joint molecules argue against these phenotypes being explained by an increase in intersister recombination at the expense of interhomolog recombination. We suggest that Rqh1 extends hybrid DNA and biases the recombination outcome toward crossing over. Our results contrast dramatically with those from the budding yeast ortholog, Sgs1, which has a meiotic antirecombination function that suppresses recombination events involving more than two DNA duplexes. These observations underscore the multiple recombination functions of RecQ homologs and emphasize that even conserved proteins can be adapted to play different roles in different organisms.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Meiose , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Homologia de Sequência de Aminoácidos , Alelos , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Conversão Gênica , Duplicação Gênica , Mutação/genética , Estrutura Terciária de Proteína , RecQ Helicases , Proteínas de Schizosaccharomyces pombe/química , Esporos Fúngicos/citologia
17.
G3 (Bethesda) ; 9(7): 2071-2088, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31109921

RESUMO

We describe an information-theory-based method and associated software for computationally identifying sister spores derived from the same meiotic tetrad. The method exploits specific DNA sequence features of tetrads that result from meiotic centromere and allele segregation patterns. Because the method uses only the genomic sequence, it alleviates the need for tetrad-specific barcodes or other genetic modifications to the strains. Using this method, strains derived from randomly arrayed spores can be efficiently grouped back into tetrads.


Assuntos
Biologia Computacional/métodos , Software , Leveduras/fisiologia , Alelos , Segregação de Cromossomos , Regulação Fúngica da Expressão Gênica , Meiose , Recombinação Genética , Reprodutibilidade dos Testes , Esporos Fúngicos
18.
G3 (Bethesda) ; 8(1): 239-251, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29138237

RESUMO

Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1 To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6 We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Polimorfismo Genético , Saccharomyces cerevisiae/genética , ATPase Trocadora de Sódio-Potássio/genética , Transaminases/genética , Bebidas Alcoólicas/análise , Cafeína/farmacologia , Cobre/farmacologia , Meios de Cultura/farmacologia , Etanol/farmacologia , Fermentação , Humanos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sais/farmacologia , Sirolimo/farmacologia , ATPase Trocadora de Sódio-Potássio/deficiência , Transaminases/deficiência
19.
G3 (Bethesda) ; 7(8): 2845-2854, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28673928

RESUMO

Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states.


Assuntos
Biofilmes , Perfilação da Expressão Gênica , Testes Genéticos , Saccharomyces cerevisiae/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Fatores de Transcrição/metabolismo
20.
G3 (Bethesda) ; 7(1): 233-246, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27836908

RESUMO

Aneuploidy, a state in which the chromosome number deviates from a multiple of the haploid count, significantly impacts human health. The phenotypic consequences of aneuploidy are believed to arise from gene expression changes associated with the altered copy number of genes on the aneuploid chromosomes. To dissect the mechanisms underlying altered gene expression in aneuploids, we used RNA-seq to measure transcript abundance in colonies of the haploid Saccharomyces cerevisiae strain F45 and two aneuploid derivatives harboring disomies of chromosomes XV and XVI. F45 colonies display complex "fluffy" morphologies, while the disomic colonies are smooth, resembling laboratory strains. Our two disomes displayed similar transcriptional profiles, a phenomenon not driven by their shared smooth colony morphology nor simply by their karyotype. Surprisingly, the environmental stress response (ESR) was induced in F45, relative to the two disomes. We also identified genes whose expression reflected a nonlinear interaction between the copy number of a transcriptional regulatory gene on chromosome XVI, DIG1, and the copy number of other chromosome XVI genes. DIG1 and the remaining chromosome XVI genes also demonstrated distinct contributions to the effect of the chromosome XVI disome on ESR gene expression. Expression changes in aneuploids appear to reflect a mixture of effects shared between different aneuploidies and effects unique to perturbing the copy number of particular chromosomes, including nonlinear copy number interactions between genes. The balance between these two phenomena is likely to be genotype- and environment-specific.


Assuntos
Aneuploidia , Regulação da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Cromossomos Fúngicos/genética , Dosagem de Genes/genética , Haploidia , Humanos , Cariótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA