Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Struct Funct ; 223(5): 2409-2432, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29500537

RESUMO

Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Septo do Cérebro/citologia , Lobo Temporal/citologia , Ritmo Teta/fisiologia , Potenciais de Ação/fisiologia , Animais , Proteínas de Transporte/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Proteínas de Membrana/metabolismo , Microscopia Confocal , Rede Nervosa/fisiologia , Vias Neurais , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Mol Neurodegener ; 10: 49, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26399695

RESUMO

Following publication of this work, we noticed that we inadvertently failed to include Dr Ferenc Deák in the author list. The author list has now been corrected and the amended authors' contributions section has been modified accordingly below.

3.
Mol Neurodegener ; 10: 18, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25881291

RESUMO

BACKGROUND: Alzheimer's disease is a neurodegenerative disorder in which extracellular deposition of ß-amyloid (Aß) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aß release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer's pathophysiology. RESULTS: Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p<0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aß exocytosis (p<0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer's disease patients and 6,175 controls to determine their contribution to Alzheimer's disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer's disease than those associated with lower VAMP1 transcript levels (p=0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer's disease risk (OR=0.88, p=0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p=0.02) and was functionally active in a dual luciferase reporter gene assay (p<0.01). CONCLUSIONS: Genetically regulated VAMP1 expression in the brain may modify both Alzheimer's disease risk and may contribute to Alzheimer's pathophysiology.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Proteína 1 Associada à Membrana da Vesícula/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Testes Genéticos , Humanos , Camundongos , Sinapses/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo
4.
Nat Neurosci ; 16(12): 1802-1811, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141313

RESUMO

Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.


Assuntos
Axônios/fisiologia , Região CA3 Hipocampal/citologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Proteínas de Arabidopsis/metabolismo , Axônios/ultraestrutura , Biotina/análogos & derivados , Biotina/metabolismo , Ondas Encefálicas/fisiologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/ultraestrutura , Vias Neurais/fisiologia , Parvalbuminas/metabolismo , Periodicidade , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA