Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(5): 924-935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499871

RESUMO

Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.


Assuntos
COVID-19 , Atividades Humanas , Mamíferos , Animais , Humanos , COVID-19/epidemiologia , Animais Selvagens , Ecossistema
2.
Ecology ; 105(6): e4318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693703

RESUMO

SNAPSHOT USA is a multicontributor, long-term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.org/). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to land use, land cover, and climate changes across spatial and temporal scales. Here we present the SNAPSHOT USA 2021 dataset, the third national camera trap survey across the US. Data were collected across 109 camera trap arrays and included 1711 camera sites. The total effort equaled 71,519 camera trap nights and resulted in 172,507 sequences of animal observations. Sampling effort varied among camera trap arrays, with a minimum of 126 camera trap nights, a maximum of 3355 nights, a median 546 nights, and a mean 656 ± 431 nights. This third dataset comprises 51 camera trap arrays that were surveyed during 2019, 2020, and 2021, along with 71 camera trap arrays that were surveyed in 2020 and 2021. All raw data and accompanying metadata are stored on Wildlife Insights (https://www.wildlifeinsights.org/), and are publicly available upon acceptance of the data papers. SNAPSHOT USA aims to sample multiple ecoregions in the United States with adequate representation of each ecoregion according to its relative size. Currently, the relative density of camera trap arrays varies by an order of magnitude for the various ecoregions (0.22-5.9 arrays per 100,000 km2), emphasizing the need to increase sampling effort by further recruiting and retaining contributors. There are no copyright restrictions on these data. We request that authors cite this paper when using these data, or a subset of these data, for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.


Assuntos
Fotografação , Estados Unidos , Animais , Mamíferos , Ecossistema
3.
J Wildl Dis ; 59(1): 186-191, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762835

RESUMO

To assess infection with or exposure to endo- and ectoparasites in Alaska brown bears (Ursus arctos), blood and fecal samples were collected during 2013-17 from five locations: Gates of the Arctic National Park and Preserve; Katmai National Park; Lake Clark National Park and Preserve; Yakutat Forelands; and Kodiak Island. Standard fecal centrifugal flotation was used to screen for gastrointestinal parasites, molecular techniques were used to test blood for the presence of Bartonella and Babesia spp., and an ELISA was used to detect antibodies reactive to Sarcoptes scabiei, a species of mite recently associated with mange in American black bears (Ursus americanus). From fecal flotations (n=160), we identified the following helminth eggs: Uncinaria sp. (n=16, 10.0%), Baylisascaris sp. (n=5, 3.1%), Dibothriocephalus sp. (n=2, 1.2%), and taeniid-type eggs (n=1, 0.6%). Molecular screening for intraerythrocytic parasites (Babesia spp.) and intracellular bacteria (Bartonella spp.) was negative for all bears tested. We detected antibodies to S. scabiei in six of 59 (10.2%) individuals. The relatively low level of parasite detection in this study meets expectations for brown bear populations living in large, relatively undisturbed habitats near the northern edge of the range. These results provide a contemporary understanding of parasites in Alaska brown bears and establish baseline levels of parasite presence to monitor for changes over time and relative to ecologic alterations.


Assuntos
Helmintos , Parasitos , Ursidae , Animais , Ursidae/parasitologia , Alaska , Sarcoptes scabiei , Anticorpos
4.
Curr Biol ; 33(1): 86-97.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36528024

RESUMO

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.


Assuntos
Ursidae , Animais , Fluxo Gênico , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Ursidae/genética
5.
Ecology ; 103(10): e3775, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35661139

RESUMO

Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication.


Assuntos
COVID-19 , Animais , Animais Selvagens , Aves , COVID-19/epidemiologia , Humanos , Mamíferos , Pandemias , Estados Unidos
6.
Ecology ; 102(6): e03353, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33793977

RESUMO

With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.


Assuntos
Animais Selvagens , Mamíferos , Animais , Aves , Dinâmica Populacional , Estados Unidos
7.
PLoS One ; 15(9): e0238711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966287

RESUMO

Winter recreation and tourism continue to expand worldwide, and where these activities overlap with valuable wildlife habitat, there is greater potential for conservation concerns. Wildlife populations can be particularly vulnerable to disturbance in alpine habitats as helicopters and snowmachines are increasingly used to access remote backcountry terrain. Brown bears (Ursus arctos) have adapted hibernation strategies to survive this period when resources and energy reserves are limited, and disturbance could negatively impact fitness and survival. To help identify areas of potential conflict between helicopter skiing and denning brown bears in Alaska, we developed a model to predict alpine denning habitat and an associated data-based framework for mitigating disturbance activities. Following den emergence in spring, we conducted three annual aerial surveys (2015-2017) and used locations from three GPS-collared bears (2008-2014) to identify 89 brown bear dens above the forest line. We evaluated brown bear den site selection of land cover, terrain, and climate factors using resource selection function (RSF) models. Our top model supported the hypothesis that bears selected dens based on terrain and climate factors that maximized thermal efficiency. Brown bears selected den sites characterized by steep slopes at moderate elevations in smooth, well-drained topographies that promoted vegetation and deep snow. We used the RSF model to map relative probability of den selection and found 85% of dens occurred within terrain predicted as prime denning habitat. Brown bear exposure to helicopter disturbance was evident as moderate to high intensities of helicopter flight tracking data overlapped prime denning habitat, and we quantified where the risk of these impact was greatest. We also documented evidence of late season den abandonment due to disturbance from helicopter skiing. The results from this study provide valuable insights into bear denning habitat requirements in subalpine and alpine landscapes. Our quantitative framework can be used to support conservation planning for winter recreation industries operating in habitats occupied by denning brown bears.


Assuntos
Clima , Ecossistema , Esqui , Ursidae/fisiologia , Alaska , Animais , Intervalos de Confiança , Sistemas de Informação Geográfica , Geografia , Modelos Teóricos , Fatores de Risco , Inquéritos e Questionários
8.
J Wildl Dis ; 55(3): 576-588, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30557123

RESUMO

We collected blood and serum from 155 brown bears (Ursus arctos) inhabiting five locations in Alaska, US during 2013-16 and tested samples for evidence of prior exposure to a suite of bacterial, viral, and parasitic agents. Antibody seroprevalence among Alaska brown bears was estimated to be 15% for Brucella spp., 10% for Francisella tularensis, 7% for Leptospira spp., 18% for canine adenovirus type 1 (CAV-1), 5% for canine distemper virus (CDV), 5% for canine parvovirus, 5% for influenza A virus (IAV), and 44% for Toxoplasma gondii. No samples were seropositive for antibodies to Trichinella spp. Point estimates of prior exposure to pathogens among brown bears at previously unsampled locations generally fell within the range of estimates for previously or contemporaneously sampled bears in Alaska. Statistical support was found for variation in antibody seroprevalence among bears by location or age cohort for CAV-1, CDV, IAV, and T. gondii. There was limited concordance in comparisons between our results and previous serosurveys regarding spatial and age-related trends in antibody seroprevalence among Alaska brown bears suggestive of temporal variation. However, we found evidence that the seroprevalence of CAV-1 antibodies is consistently high in bears inhabiting southwest Alaska and the cumulative probability of exposure may increase with age. We found evidence for seroconversion or seroreversion to six different infectious agents in one or more bears. Results of this study increase our collective understanding of disease risk to both Alaska brown bear populations and humans that utilize this resource.


Assuntos
Envelhecimento , Infecções Bacterianas/veterinária , Toxoplasmose Animal/imunologia , Triquinelose/veterinária , Ursidae , Viroses/veterinária , Alaska/epidemiologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Anti-Helmínticos/sangue , Anticorpos Antiprotozoários/sangue , Anticorpos Antivirais/sangue , Infecções Bacterianas/sangue , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/imunologia , Estudos Soroepidemiológicos , Toxoplasmose Animal/sangue , Toxoplasmose Animal/epidemiologia , Triquinelose/sangue , Triquinelose/epidemiologia , Triquinelose/imunologia , Viroses/sangue , Viroses/epidemiologia , Viroses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA