Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 126(Pt 11): 2502-15, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23549790

RESUMO

Transcription factor IIH (TFIIH) participates in transcription, nucleotide excision repair and the control of the cell cycle. In the present study, we demonstrate that the Dmp52 subunit of TFIIH in Drosophila physically interacts with the fly p53 homologue, Dp53. The depletion of Dmp52 in the wing disc generates chromosome fragility, increases apoptosis and produces wings with a reduced number of cells; cellular proliferation, however, is not affected. Interestingly, instead of suppressing the apoptotic phenotype, the depletion of Dp53 in Dmp52-depleted wing disc cells increases apoptosis and the number of cells that suffer from chromosome fragility. The apoptosis induced by the depletion of Dmp52 alone is partially dependent on the JNK pathway. In contrast, the enhanced apoptosis caused by the simultaneous depletion of Dp53 and Dmp52 is absolutely JNK-dependent. In this study, we also show that the anti-proliferative drug triptolide, which inhibits the ATPase activity of the XPB subunit of TFIIH, phenocopies the JNK-dependent massive apoptotic phenotype of Dp53-depleted wing disc cells; this observation suggests that the mechanism by which triptolide induces apoptosis in p53-deficient cancer cells involves the activation of the JNK death pathway.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Proteínas de Drosophila/metabolismo , MAP Quinase Quinase 4/metabolismo , Fenantrenos/farmacologia , Fator de Transcrição TFIIH/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Fragilidade Cromossômica/efeitos dos fármacos , Fragilidade Cromossômica/genética , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Compostos de Epóxi/farmacologia , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Fator de Transcrição TFIIH/genética , Proteína Supressora de Tumor p53/genética
2.
Cancer Cell Int ; 14(1): 18, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24576043

RESUMO

General transcription is required for the growth and survival of all living cells. However, tumor cells require extraordinary levels of transcription, including the transcription of ribosomal RNA genes by RNA polymerase I (RNPI) and mRNA by RNA polymerase II (RNPII). In fact, cancer cells have mutations that directly enhance transcription and are frequently required for cancer transformation. For example, the recent discovery that MYC enhances the transcription of the majority genes in the genome correlates with the fact that several transcription interfering drugs preferentially kill cancer cells. In recent years, advances in the mechanistic studies of the basal transcription machinery and the discovery of drugs that interfere with multiple components of transcription are being used to combat cancer. For example, drugs such as triptolide that targets the general transcription factors TFIIH and JQ1 to inhibit BRD4 are administered to target the high proliferative rate of cancer cells. Given the importance of finding new strategies to preferentially sensitize tumor cells, this review primarily focuses on several transcription inhibitory drugs to demonstrate that the basal transcription machinery constitutes a potential target for the design of novel cancer drugs. We highlight the drugs' mechanisms for interfering with tumor cell survival, their importance in cancer treatment and the challenges of clinical application.

3.
J Biol Chem ; 287(40): 33567-80, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22865882

RESUMO

The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Cromatina/química , Cromatina/metabolismo , Cromossomos/ultraestrutura , Cruzamentos Genéticos , Reparo do DNA , Drosophila melanogaster , Histonas/química , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Interferência de RNA , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA