RESUMO
Prostate cancer (PCa) is a common type of cancer affecting male population. PCa treatments have side effects and are temporarily effective, so new therapeutic options are being investigated. Due to the high demand of energy for cell proliferation, an increase in the expression and activity of lipogenic enzymes such as the stearoyl-CoA desaturase (SCD) have been observed in PCa. Sterculic acid, contained in the seed's oil of Malvales, is a natural inhibitor of SCD. The objective of our investigation was to evaluate the effects of sterculic oil (SO) from Sterculia apetala seeds on proliferation, cell cycle and apoptosis in prostate cancer cells. SO was administered to PC3 and LNCaP cells, and to prostate normal cells; cell viability, cell cycle, apoptosis, SCD gene and protein expression and enzymatic activity were analyzed. SO administration (4 mM sterculic acid) diminished cell viability in LNCaP and PC3 cells, arrested cell cycle in G2 and promoted apoptosis. SO diminished SCD enzymatic activity with no effects on gene nor protein expression. Our results suggest that SO might offer benefits as an adjuvant in hormonal and chemotherapy prostate cancer treatments. This is the first study to analyze the effect of SO on cancer cells.
Assuntos
Neoplasias da Próstata , Estearoil-CoA Dessaturase , Apoptose , Linhagem Celular , Proliferação de Células , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismoRESUMO
Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer-siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.
Assuntos
Neoplasias da Próstata , Androgênios , Animais , Humanos , Masculino , Mamíferos , Oligonucleotídeos , Neoplasias da Próstata/metabolismo , RNA Interferente PequenoRESUMO
Prostate cancer is one of the main causes of cancer and the sixth cause of death among men worldwide. One of the major challenges in prostate cancer research is cell heterogeneity defined as the different genomic and phenotypic characteristics in each individual cell making more difficult to assess the proper prostate cancer diagnosis and therapy. Tumor 3D spatial arrangement allow a strong interaction between the different cellular lineages and components which modulate cell proliferation, differentiation, and morphology. Prostate cancer spheroids are a cellular model which is capable to mimic the mechanical tensions of tumor tissue, providing a more representative pathophysiological model than the use of conventional 2D culture. Here, we describe a protocol to develop a 3D model of spheroids using prostate cancer cell lines (LNCaP, PC3, VCaP) which can be used to improve research considering tumoral heterogeneity role in cancer development, prognosis, and therapy.
Assuntos
Neoplasias da Próstata/patologia , Esferoides Celulares/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Células PC-3RESUMO
In the treatment of cancer, over the last decade different drugs delivery systems have been developed to increase therapeutic specificity to improve drug's efficacy, and safety by increasing bioavailability. Among these systems, small nucleic acid molecules with a three-dimensional structure, known as aptamers, have shown several advantages. Several approaches to design aptamers require modifications from starting libraries of DNA sequences. Here, we describe cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment), a sophisticated technique based on RNA aptamers as a starting point, that enables design functional aptamers as drug-delivery tools. This variation of the original SELEX technique using RNA aptamers instead DNA aptamers allows to obtain aptamers that are internalized in prostate cancer cells using as a starting point an RNA aptamer library with 76 nucleotides. The major advantage of this technique is that modifications are not required in the initial library, as initial T7 transcription promoter or 2'F nucleotides before sequencing.