Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Clin Sci (Lond) ; 137(10): 807-821, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37219940

RESUMO

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.


Assuntos
Linfócitos B , Metabolismo dos Lipídeos , Glicosilação , Transporte Biológico , Anticorpos , Glucose
2.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147803

RESUMO

Type 2 diabetes (T2D) and Alzheimer's disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (ß-Amyloid; Aß). Both IAPP and Aß can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.


Assuntos
Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Choque Térmico/metabolismo , Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Espaço Extracelular/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Inflamação , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteínas tau/metabolismo
3.
Am J Physiol Cell Physiol ; 317(3): C420-C433, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216193

RESUMO

It is now accepted that nutrient abundance in the blood, especially glucose, leads to the generation of reactive oxygen species (ROS), ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensatory response from antioxidant mechanisms, the cell, or indeed the tissue, becomes overwhelmed by oxidative stress, leading to the activation of intracellular stress-associated pathways. Activation of the same or similar pathways also appears to play a role in mediating insulin resistance, impaired insulin secretion, and late diabetic complications. The ability of antioxidants to protect against the oxidative stress induced by hyperglycemia and elevated free fatty acid (FFA) levels in vitro suggests a causative role of oxidative stress in mediating the latter clinical conditions. In this review, we describe common biochemical processes associated with oxidative stress driven by hyperglycemia and/or elevated FFA and the resulting clinical outcomes: ß-cell dysfunction and peripheral tissue insulin resistance.


Assuntos
Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estresse Oxidativo/fisiologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
4.
Nutr Res Rev ; 32(2): 192-204, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31203824

RESUMO

Vitamin D receptor expression and associated function have been reported in various muscle models, including C2C12, L6 cell lines and primary human skeletal muscle cells. It is believed that 1,25-hydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, has a direct regulatory role in skeletal muscle function, where it participates in myogenesis, cell proliferation, differentiation, regulation of protein synthesis and mitochondrial metabolism through activation of various cellular signalling cascades, including the mitogen-activated protein kinase pathway(s). It has also been suggested that 1,25(OH)2D3 and its associated receptor have genomic targets, resulting in regulation of gene expression, as well as non-genomic functions that can alter cellular behaviour through binding and modification of targets not directly associated with transcriptional regulation. The molecular mechanisms of vitamin D signalling, however, have not been fully clarified. Vitamin D inadequacy or deficiency is associated with muscle fibre atrophy, increased risk of chronic musculoskeletal pain, sarcopenia and associated falls, and may also decrease RMR. The main purpose of the present review is to describe the molecular role of vitamin D in skeletal muscle tissue function and metabolism, specifically in relation to proliferation, differentiation and protein synthesis processes. In addition, the present review also includes discussion of possible genomic and non-genomic pathways of vitamin D action.


Assuntos
Músculo Esquelético/fisiologia , Vitamina D/fisiologia , Animais , Calcitriol/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica , Humanos , Mitocôndrias Musculares/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/citologia , Receptores de Calcitriol/fisiologia , Transdução de Sinais , Vitamina D/administração & dosagem , Vitamina D/biossíntese
5.
Reproduction ; 153(1): R29-R42, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390417

RESUMO

Vitamin D (VitD) is an important secosteroid and has attracted attention in several areas of research due to common VitD deficiency in the population, and its potential to regulate molecular pathways related to chronic and inflammatory diseases. VitD metabolites and the VitD receptor (VDR) influence many tissues including those of the reproductive system. VDR expression has been demonstrated in various cell types of the male reproductive tract, including spermatozoa and germ cells, and in female reproductive tissues including the ovaries, placenta and endometrium. However, the molecular role of VitD signalling and metabolism in reproductive function have not been fully established. Consequently, the aim of this work is to review current metabolic and molecular aspects of the VitD­VDR axis in reproductive medicine and to propose the direction of future research. Specifically, the influence of VitD on sperm motility, calcium handling, capacitation, acrosin reaction and lipid metabolism is examined. In addition, we will also discuss the effect of VitD on sex hormone secretion and receptor expression in primary granulosa cells, along with the impact on cytokine production in trophoblast cells. The review concludes with a discussion of the recent developments in VitD­VDR signalling specifically related to altered cellular bioenergetics, which is an emerging concept in the field of reproductive medicine.

6.
Biochem J ; 473(24): 4527-4550, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27941030

RESUMO

Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.


Assuntos
Diabetes Mellitus/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
7.
Biochem J ; 473(13): 1845-57, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27354561

RESUMO

The importance of metabolic pathways for life and the nature of participating reactions have challenged physiologists and biochemists for over a hundred years. Eric Arthur Newsholme contributed many original hypotheses and concepts to the field of metabolic regulation, demonstrating that metabolic pathways have a fundamental thermodynamic structure and that near identical regulatory mechanisms exist in multiple species across the animal kingdom. His work at Oxford University from the 1970s to 1990s was groundbreaking and led to better understanding of development and demise across the lifespan as well as the basis of metabolic disruption responsible for the development of obesity, diabetes and many other conditions. In the present review we describe some of the original work of Eric Newsholme, its relevance to metabolic homoeostasis and disease and application to present state-of-the-art studies, which generate substantial amounts of data that are extremely difficult to interpret without a fundamental understanding of regulatory principles. Eric's work is a classical example of how one can unravel very complex problems by considering regulation from a cell, tissue and whole body perspective, thus bringing together metabolic biochemistry, physiology and pathophysiology, opening new avenues that now drive discovery decades thereafter.


Assuntos
Metabolismo/fisiologia , Animais , Homeostase , Humanos , Metabolismo/genética , Modelos Biológicos , Termodinâmica
8.
Br J Nutr ; 116(3): 470-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27215379

RESUMO

We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1ß, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1ß, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.


Assuntos
Alanina/farmacologia , Anti-Inflamatórios/farmacologia , Suplementos Nutricionais , Dipeptídeos/farmacologia , Glutamina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido/efeitos adversos , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Creatina Quinase/sangue , Citocinas/sangue , Dipeptídeos/uso terapêutico , Glutamina/sangue , Glutamina/metabolismo , Glutamina/uso terapêutico , Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , L-Lactato Desidrogenase/sangue , Leucócitos Mononucleares/metabolismo , Masculino , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Ratos Wistar
9.
Reprod Biol Endocrinol ; 13: 134, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26669322

RESUMO

BACKGROUND: Lifestyle factors including cigarette smoking, alcohol consumption and nutritional habits impact on health, wellness, and the risk of chronic diseases. In the areas of in-vitro fertilization (IVF) and pregnancy, lifestyle factors influence oocyte production, fertilization rates, pregnancy and pregnancy loss, while chronic, low-grade oxidative stress may underlie poor outcomes for some IVF cases. METHODS: Here, we review the current literature and present some original, previously unpublished data, obtained from couples attending the PIVET Medical Centre in Western Australia. RESULTS: During the study, 80 % of females and 70 % of male partners completed a 1-week diary documenting their smoking, alcohol and fruit and vegetable intake. The subsequent clinical outcomes of their IVF treatment such as quantity of oocytes collected, fertilization rates, pregnancy and pregnancy loss were submitted to multiple regression analysis, in order to investigate the relationship between patients, treatment and the recorded lifestyle factors. Of significance, it was found that male smoking caused an increased risk of pregnancy loss (p = 0.029), while female smoking caused an adverse effect on ovarian reserve. Both alcohol consumption (ß = 0.074, p < 0.001) and fruit and vegetable consumption (ß = 0.034, p < 0.001) had positive effects on fertilization. CONCLUSION: Based on our results and the current literature, there is an important impact of lifestyle factors on IVF clinical outcomes. Currently, there are conflicting results regarding other lifestyle factors such as nutritional habits and alcohol consumption, but it is apparent that chronic oxidative stress induced by lifestyle factors and poor nutritional habits associate with a lower rate of IVF success.


Assuntos
Consumo de Bebidas Alcoólicas , Dieta , Fertilização in vitro , Frutas , Fumar , Verduras , Adulto , Feminino , Humanos , Estilo de Vida , Gravidez , Resultado da Gravidez , Resultado do Tratamento
10.
Clin Sci (Lond) ; 128(10): 723-33, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25597817

RESUMO

Circulating immune cells are considered a source for biomarkers in health and disease, since they are exposed to nutritional, metabolic and immunological stimuli in the vasculature. Cryopreservation of leucocytes is routinely used for long-term storage and determination of phenotypic/functional changes at a later date. Exploring the role of bioenergetics and mitochondrial (dys)function in leucocytes is often examined by using freshly isolated cells. The aim of the pilot study described herein was to assess leucocyte bioenergetics in cryopreserved cells. Leucocytes were isolated from whole blood, counted and frozen in liquid nitrogen (LN2) for a period of 3 months. Cells were thawed at regular intervals and bioenergetic analysis performed using the Seahorse XFe96 flux analyser. Cryogenic storage reduced cell viability by 20%, but cell bioenergetic responses were largely intact for up to 1 month storage in LN2. However, after 1 month storage, mitochondrial function was impaired as reflected by decreasing basal respiration, ATP production, maximum (MAX) respiration, reserve capacity and coupling efficiency. Conversely, glycolytic activity was increased after 1 month, most notably the enhanced glycolytic response to 25 mM glucose without any change in glycolytic capacity. Finally, calculation of bioenergetic health index (BHI) demonstrated that this potential diagnostic parameter was sensitive to cryopreservation. The present study has demonstrated for the first time that cryopreservation of primary immune cells modified their metabolism in a time-dependent fashion, indicated by attenuated aerobic respiration and enhanced glycolytic activity. Taken together, we recommend caution in the interpretation of bioenergetic responses or BHI in cryopreserved samples.


Assuntos
Criopreservação/métodos , Metabolismo Energético/fisiologia , Leucócitos Mononucleares/metabolismo , Mitocôndrias/fisiologia , Neutrófilos/metabolismo , Sobrepeso/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Análise de Variância , Composição Corporal/fisiologia , Respiração Celular/fisiologia , Sobrevivência Celular/fisiologia , Feminino , Humanos , Masculino , Análise do Fluxo Metabólico , Projetos Piloto , Fatores de Tempo
11.
Mediators Inflamm ; 2015: 105828, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26693205

RESUMO

Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-ß (Aß) protein accumulation, and mitochondrial dysfunction link T2DM and AD.


Assuntos
Doença de Alzheimer/etiologia , Diabetes Mellitus Tipo 2/etiologia , Inflamação/complicações , Resistência à Insulina , Obesidade/etiologia , Estresse Oxidativo , Peptídeos beta-Amiloides/metabolismo , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Heme Oxigenase-1/análise , Humanos , NADP/metabolismo , eIF-2 Quinase/fisiologia
12.
Int J Sport Nutr Exerc Metab ; 25(2): 188-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25202991

RESUMO

Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway.


Assuntos
Suplementos Nutricionais , Glutamina/farmacologia , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal , Resistência Física/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Compostos de Amônio/sangue , Animais , Glutamina/sangue , Glutamina/metabolismo , Dissulfeto de Glutationa/metabolismo , Proteínas de Choque Térmico/metabolismo , Fígado/metabolismo , Masculino , Oxirredução , Ratos Wistar , Fatores de Transcrição/metabolismo
13.
Proc Nutr Soc ; 82(1): 22-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285520

RESUMO

Nutrients can impact and regulate cellular metabolism and cell function which is particularly important for the activation and function of diverse immune subsets. Among the critical nutrients for immune cell function and fate, glutamine is possibly the most widely recognised immunonutrient, playing key roles in TCA cycle, heat shock protein responses and antioxidant systems. In addition, glutamine is also involved with inter-organ ammonia transport, and this is particularly important for not only immune cells, but also to the brain, especially in catabolic situations such as critical care and extenuating exercise. The well characterised fall in blood glutamine availability has been the main reason for studies to investigate the possible effects of glutamine replacement via supplementation but many of the results are in poor agreement. At the same time, a range of complex pathways involved in glutamine metabolism have been revealed via supplementation studies. This article will briefly review the function of glutamine in the immune system, with emphasis on metabolic mechanisms, and the emerging role of glutamine in the brain glutamate/gamma-amino butyric acid cycle. In addition, relevant aspects of glutamine supplementation are discussed.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Encéfalo/metabolismo
14.
Nutrients ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839353

RESUMO

Coffee is a popular and widely consumed beverage worldwide, with epidemiological studies showing reduced risk of cardiovascular disease, cancers and non-alcoholic fatty liver disease. However, few studies have investigated the health effects of the post-brewing coffee product, spent coffee grounds (SCG), from either hot- or cold-brew coffee. SCG from hot-brew coffee improved metabolic parameters in rats with diet-induced metabolic syndrome and improved gut microbiome in these rats and in humans; further, SCG reduced energy consumption in humans. SCG contains similar bioactive compounds as the beverage including caffeine, chlorogenic acids, trigonelline, polyphenols and melanoidins, with established health benefits and safety for human consumption. Further, SCG utilisation could reduce the estimated 6-8 million tonnes of waste each year worldwide from production of coffee as a beverage. In this article, we explore SCG as a major by-product of coffee production and consumption, together with the potential economic impacts of health and non-health applications of SCG. The known bioactive compounds present in hot- and cold-brew coffee and SCG show potential effects in cardiovascular disease, cancer, liver disease and metabolic disorders. Based on these potential health benefits of SCG, it is expected that foods including SCG may moderate chronic human disease while reducing the environmental impact of waste otherwise dumped in landfill.


Assuntos
Doenças Cardiovasculares , Café , Ratos , Humanos , Animais , Alimento Funcional , Cafeína/análise
15.
Nutrition ; 116: 112198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717500

RESUMO

OBJECTIVES: Obesity is a multifactorial condition associated with metabolic alterations that can be aggravated during female aging. Calorie restriction via intermittent fasting (IF) diets may reduce body weight and therefore have the potential to decrease obesity and associated comorbidities, such as insulin resistance. This study investigated the effects of two IF protocols, alternate-day fasting (ADF) and time-restricted feeding (TRF) in middle-aged obese female rats. METHODS: Wistar rats (age 15 mo) were fed with standard chow or high-fat diet for 8 wk and then separated into the following groups (n = 5-8 each) for another 8 wk: control (received standard chow), obese (received high-fat diet), obese + ADF (24-h fasting protocol), and obese + TRF (14 h daily). RESULTS: At the end of the study, both IF protocols were able to reduce body weight and body mass index compared with the obese group. However, no changes were observed in adiposity and glucose homeostasis. We also found an increase in total leukocytes, lymphocytes, and monocytes in the TRF group and a higher number of platelets in the ADF group. Blood lipid profiles, including triglycerides and high-density lipoprotein, as well as liver stress responses, such as heat shock protein 70 and malondialdehyde, were not changed by IF. CONCLUSIONS: Although ADF and TRF protocols resulted in a reduction of body weight and body mass index, these dietary interventions did not promote health benefits, such as reducing blood lipid profile, adiposity, and insulin resistance. In addition, ADF and TRF increased inflammatory biomarkers, which may increase the risk of obesity-associated comorbidities.


Assuntos
Resistência à Insulina , Ratos , Feminino , Animais , Resistência à Insulina/fisiologia , Ratos Wistar , Obesidade , Jejum , Peso Corporal , Lipídeos
16.
Antioxidants (Basel) ; 11(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052612

RESUMO

Irreversible pancreatic ß-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The ß-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The ß-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the ß-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key ß-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.

17.
Mol Cell Endocrinol ; 555: 111725, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868425

RESUMO

The pancreatic ß cells circadian clock plays a relevant role in glucose metabolism. NADPH oxidase (NOX) family is responsible for producing reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, using NADPH as an electron donor. In pancreatic ß-cells, NOX-derived ROS inhibits basal and glucose-stimulated insulin secretion. Thus, we hypothesized that the absence of BMAL1, a core circadian clock component, could trigger an increase of NOX2-derived ROS in pancreatic ß cells, inhibiting insulin secretion under basal and stimulated glucose conditions. To test such hypothesis, Bmal1 knockdown (KD) was performed in cultured clonal ß-cell line (INS-1E) and knocked out in isolated pancreatic islets, using a tissue-specific ß-cells Bmal1 knockout (KO) mice. The insulin secretion was assessed in the presence of NOX inhibitors. The Bmal1 KD within INS-1E cells elicited a rise of intracellular ROS content under both glucose stimuli (2.8 mM and 16.7 mM), associated with an increase in Nox2 expression. Additionally, alterations of glutathione levels, CuZnSOD and catalase activities, reduction of ATP/ADP ratio, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and aconitase activities, followed by glucokinase and Slc2a2 (Glut2) expression were also observed in INS-1E ß-cells, reflecting in a diminished insulin secretion pattern. The isolated islets from ß-cell Bmal1-/- mice have shown a similar cellular response, where an increased NOX2-derived ROS content and a reduced basal- and glucose-stimulated insulin secretion were observed. Therefore, together with NOX inhibition (Apocynin), polyethene-glycol linked to superoxide dismutase (PEG-SOD), phorbol myristate acetate (PMA), and diethyldithiocarbamate (DDC) data, our findings suggest a possible BMAL1-mediated NOX2-derived ROS generation in pancreatic ß cells, leading to the modulation of both basal- and glucose-stimulated insulin secretion.


Assuntos
Células Secretoras de Insulina , Fatores de Transcrição ARNTL , Animais , Glucose , Insulina , Secreção de Insulina , Camundongos , NADPH Oxidases , Espécies Reativas de Oxigênio
18.
Biomed Pharmacother ; 135: 111138, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360781

RESUMO

In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes.Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.


Assuntos
Aminoquinolinas/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/epidemiologia , Influenza Pandêmica, 1918-1919 , SARS-CoV-2/efeitos dos fármacos , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antivirais/farmacologia , Humanos , Influenza Pandêmica, 1918-1919/prevenção & controle , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
19.
Oxid Med Cell Longev ; 2021: 3683796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621463

RESUMO

Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO-) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO- metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO- concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO- bioavailability and its underlying regulatory mechanisms.


Assuntos
Rim/metabolismo , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal , Transdução de Sinais/efeitos dos fármacos , Animais , Disponibilidade Biológica , Glicemia/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Mitocôndrias/metabolismo , Modelos Animais , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo
20.
Cell Biochem Funct ; 28(1): 24-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19885855

RESUMO

In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concentrations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise.


Assuntos
Dipeptídeos/farmacologia , Glutamina/farmacologia , Mediadores da Inflamação/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Alanina/farmacologia , Animais , Creatina Quinase/sangue , Creatina Quinase/metabolismo , Suplementos Nutricionais , Dinoprostona/sangue , Ácido Glutâmico/sangue , Glutamina/sangue , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA