Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 618(7963): 169-179, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225982

RESUMO

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Assuntos
Endorribonucleases , MicroRNAs , RNA Mensageiro , Humanos , Genes jun/genética , Genes myc/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Endorribonucleases/química , Endorribonucleases/metabolismo , Transcriptoma
2.
Immunity ; 47(6): 1182-1196.e10, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262351

RESUMO

CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Ácidos e Sais Biliares/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença de Crohn/imunologia , Ileíte/imunologia , Mucosa Intestinal/imunologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Adulto , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Transporte Biológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Homeostase/imunologia , Humanos , Ileíte/genética , Ileíte/patologia , Íleo/imunologia , Íleo/patologia , Imunidade nas Mucosas , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Estresse Oxidativo , Transdução de Sinais , Tetra-Hidroisoquinolinas/farmacologia
3.
Mol Cell Proteomics ; 23(4): 100746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447791

RESUMO

Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.


Assuntos
Doença de Huntington , Mitocôndrias , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Mitocôndrias/metabolismo , Humanos , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosforilação Oxidativa , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Linhagem Celular , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Espectrometria de Massas , Perfil de Ribossomos
4.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589732

RESUMO

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Assuntos
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Sumoilação , Expressão Gênica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858434

RESUMO

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Assuntos
Acetamidas , Antivirais , Isoindóis , Vírus Lassa , Fatores de Terminação de Peptídeos , Piperidonas , RNA Polimerase Dependente de RNA , Proteínas Virais , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Isoindóis/farmacologia , Isoindóis/uso terapêutico , Febre Lassa/tratamento farmacológico , Vírus Lassa/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteoma , Proteômica , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
7.
PLoS Pathog ; 17(4): e1009501, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836016

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , COVID-19/virologia , Quirópteros/metabolismo , SARS-CoV-2/genética , Animais , COVID-19/genética , Quirópteros/genética , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
J Am Chem Soc ; 144(45): 20815-20824, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322830

RESUMO

RNA is challenging to target with bioactive small molecules, particularly those of low molecular weight that bind with sufficient affinity and specificity. In this report, we developed a platform to address this challenge, affording a novel bioactive interaction. An RNA-focused small-molecule fragment collection (n = 2500) was constructed by analyzing features in all publicly reported compounds that bind RNA, the largest collection of RNA-focused fragments to date. The RNA-binding landscape for each fragment was studied by using a library-versus-library selection with an RNA library displaying a discrete structural element, probing over 12.8 million interactions, the greatest number of interactions between fragments and biomolecules probed experimentally. Mining of this dataset across the human transcriptome defined a drug-like fragment that potently and specifically targeted the microRNA-372 hairpin precursor, inhibiting its processing into the mature, functional microRNA and alleviating invasive and proliferative oncogenic phenotypes in gastric cancer cells. Importantly, this fragment has favorable properties, including an affinity for the RNA target of 300 ± 130 nM, a molecular weight of 273 Da, and quantitative estimate of drug-likeness (QED) score of 0.8. (For comparison, the mean QED of oral medicines is 0.6 ± 0.2). Thus, these studies demonstrate that a low-molecular weight, fragment-like compound can specifically and potently modulate RNA targets.


Assuntos
MicroRNAs , Bibliotecas de Moléculas Pequenas , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Peso Molecular , MicroRNAs/metabolismo , Carcinogênese
9.
J Am Chem Soc ; 143(33): 13044-13055, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387474

RESUMO

Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.


Assuntos
Benzimidazóis/farmacologia , MicroRNAs/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Ribonucleases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Benzimidazóis/química , Humanos , MicroRNAs/metabolismo , Estrutura Molecular , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Inibidores de Proteínas Quinases/química , Quinolonas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Ribonucleases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Anal Chem ; 92(16): 11018-11028, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32658454

RESUMO

Hydrogen/Deuterium Exchange (HDX) coupled with Mass Spectrometry (HDX-MS) is a sensitive and robust method to probe protein conformational changes and protein-ligand interactions. HDX-MS relies on successful proteolytic digestion of target proteins under acidic conditions to localize perturbations in exchange behavior to protein structure. The ability of the protease to produce small peptides and overlapping fragments and provide sufficient coverage of the protein sequence is essential for localizing regions of interest. While the acid protease pepsin has been the enzyme of choice for HDX-MS studies, recently, it was shown that aspartic proteases from carnivorous pitcher plants of the genus Nepenthes are active under low-pH conditions and cleave at basic residues that are "forbidden" in peptic digests. In this report, we describe the utility of one of these enzymes, Nepenthesin II (NepII), in a HDX-MS workflow. A systematic and statistical analysis of data from 11 proteins (6391 amino acid residues) digested with immobilized porcine pepsin or NepII under conditions compatible with HDX-MS was performed to examine protease cleavage specificities. The cleavage of pepsin was most influenced by the amino acid residue at position P1. Phe, Leu, and Met are favored residues, each with a cleavage probability of greater than 40%. His, Lys, Arg, or Pro residues prohibit cleavage when found at the P1 position. In contrast, NepII offers advantageous cleavage to all basic residues and produces shortened peptides that could improve the spatial resolution in HDX-MS studies.


Assuntos
Enzimas Imobilizadas/química , Pepsina A/química , Proteólise , Animais , Biocatálise , Deutério/química , Medição da Troca de Deutério , Espectrometria de Massas , Sarraceniaceae/enzimologia , Especificidade por Substrato , Suínos
11.
BMC Neurol ; 20(1): 317, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854643

RESUMO

BACKGROUND: The ventricular system plays a vital role in blood-cerebrospinal fluid (CSF) exchange and interstitial fluid-CSF drainage pathways. CSF is formed in the specialized secretory tissue called the choroid plexus, which consists of epithelial cells, fenestrated capillaries and the highly vascularized stroma. Very little is currently known about the role played by the ventricles and the choroid plexus tissue in aging and Alzheimer's disease (AD). METHODS: In this study, we used our state-of-the-art proteomic platform, a liquid chromatography/mass spectrometry (LC-MS/MS) approach coupled with Tandem Mass Tag isobaric labeling to conduct a detailed unbiased proteomic analyses of autopsied tissue isolated from the walls of the inferior horn of the lateral ventricles in AD (77.2 ± 0.6 yrs), age-matched controls (77.0 ± 0.5 yrs), and nonagenarian cases (93.2 ± 1.1 yrs). RESULTS: Ingenuity pathway analyses identified phagosome maturation, impaired tight-junction signaling, and glucose/mannose metabolism as top significantly regulated pathways in controls vs nonagenarians. In matched-control vs AD cases we identified alterations in mitochondrial bioenergetics, oxidative stress, remodeling of epithelia adherens junction, macrophage recruitment and phagocytosis, and cytoskeletal dynamics. Nonagenarian vs AD cases demonstrated augmentation of oxidative stress, changes in gluconeogenesis-glycolysis pathways, and cellular effects of choroidal smooth muscle cell vasodilation. Amyloid plaque score uniquely correlated with remodeling of epithelial adherens junctions, Fc γ-receptor mediated phagocytosis, and alterations in RhoA signaling. Braak staging was uniquely correlated with altered iron homeostasis, superoxide radical degradation and phagosome maturation. CONCLUSIONS: These changes provide novel insights to explain the compromise to the physiological properties and function of the ventricles/choroid plexus system in nonagenarian aging and AD pathogenesis. The pathways identified could provide new targets for therapeutic strategies to mitigate the divergent path towards AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Ventrículos Laterais/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Doença de Alzheimer/líquido cefalorraquidiano , Ventrículos Cerebrais/patologia , Plexo Corióideo/patologia , Cromatografia Líquida , Feminino , Humanos , Masculino , Placa Amiloide/patologia , Proteômica , Espectrometria de Massas em Tandem
12.
Int J Geriatr Psychiatry ; 33(2): 358-363, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28639714

RESUMO

OBJECTIVE: Detection of Alzheimer's disease (AD) prior to clinical inception will be paramount for introducing disease modifying treatments. We have begun collecting baseline characteristics of a community cohort for longitudinal assessment and testing of antecedent blood-based biomarkers. We describe the baseline visit from the first 131 subjects in relationship to a commonly described cytokine, interleukin 6 (IL-6). METHODS: Subjects from the community presented for a free memory screening with varying degrees of memory concern. We quantified the baseline plasma levels of the cytokine IL-6 and assessed cognition (Montreal Cognitive Assessment, MoCA) and mood (Geriatric Depression Scale, GDS) in relationship to their memory concern. RESULTS: Baseline MoCA scores were inversely related to age, and this association was influenced by an AD risk factor, Apolipoprotein E (APOE4) carrier status. The degree of subjective cognitive decline correlated with GDS and was inversely related to MoCA scores. Interleukin 6 levels were related to age, body mass index, and years of education. CONCLUSIONS: It will be important to assess how these baseline IL-6 levels and forthcoming novel biomarkers relate to future cognitive decline. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/sangue , Interleucina-6/sangue , Afeto/fisiologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/análise , Biomarcadores/sangue , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Avaliação Geriátrica/métodos , Humanos , Estudos Longitudinais , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica
13.
Altern Ther Health Med ; 22 Suppl 2: 6-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27433836

RESUMO

Context • Telomeres are repeated deoxyribonucleic acid (DNA) sequences (TTAGGG) that are located on the 5' ends of chromosomes, and they control the life span of eukaryotic cells. Compelling evidence has shown that the length of a person's life is dictated by the limited number of times that a human cell can divide. The enzyme telomerase has been shown to bind to and extend the length of telomeres. Thus, strategies for activating telomerase may help maintain telomere length and, thus, may lead to improved health during aging. Objective • The current study intended to investigate the effects of several natural compounds on telomerase activity in an established cell model of telomere shortening (ie, IMR90 cells). Design • The research team designed an in vitro study. Setting • The study was conducted at Roskamp Institute in Sarasota, FL, USA. Intervention • The tested single compounds were (1) α-lipoic acid, (1) green tea extract, (2) dimethylaminoethanol L-bitartrate (DMAE L-bitartrate), (3) N-acetyl-L-cysteine hydrochloride (HCL), (4) chlorella powder, (5) L-carnosine, (6) vitamin D3, (7) rhodiola PE 3%/1%, (8) glycine, (9) French red wine extract, (10) chia seed extract, (11) broccoli seed extract, and (12) Astragalus (TA-65). The compounds were tested singly and as blends. Outcome Measures • Telomerase activity for single compounds and blends of compounds was measured by the TeloTAGGG telomerase polymerase chain reaction (PCR) enzyme-linked immunosorbent assay (ELISA). The 4 most potent blends were investigated for their effects on cancer-cell proliferation and for their potential effects on the cytotoxicity and antiproliferative activity of a chemotherapeutic agent, the topoisomerase I inhibitor topotecan. The benefits of 6 population doublings (PDs) were measured for the single compounds, and the 4 blends were compared to 3 concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results • Certain of the compounds increased telomerase activity, and combinations of the top-ranking compounds were able to increase telomerase activity significantly, from 51% to 290%, relative to controls. Conclusions • The results have confirmed that many naturally occurring compounds hold the potential to activate telomerase and that certain of those compounds have demonstrated synergistic effects to produce more potent blends. Given the relationship between telomere shortening, aging, and the decline of tissue function, it is reasonable to hypothesize that such telomerase-activating blends may have health-promoting benefits, particularly in relation to aging-associated conditions. Further investigation of such blends in human studies that are designed to evaluate safety and the effects on telomere length are thus warranted.


Assuntos
Antineoplásicos/farmacologia , Telomerase/efeitos dos fármacos , Telômero/efeitos dos fármacos , Células Cultivadas , Chlorella , Humanos , Neoplasias , Telomerase/metabolismo
14.
Brain Inj ; 30(12): 1414-1427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27834539

RESUMO

PRIMARY OBJECTIVE: To investigate the status of the cerebrovasculature following repetitive mild traumatic brain injury (r-mTBI). RESEARCH DESIGN: TBI is a risk factor for development of various neurodegenerative disorders. A common feature of neurodegenerative disease is cerebrovascular dysfunction which includes alterations in cerebral blood flow (CBF). TBI can result in transient reductions in CBF, with severe injuries often accompanied by varying degrees of vascular pathology post-mortem. However, at this stage, few studies have investigated the cerebrovasculature at chronic time points following repetitive mild brain trauma. METHODS AND PROCEDURES: r-mTBI was delivered to wild-type mice (12 months old) twice per week for 3 months and tested for spatial memory deficits (Barnes Maze task) at 1 and 6 months post-injury. At 7 months post-injury CBF was assessed via Laser Doppler Imaging and, following euthanasia, the brain was probed for markers of cerebrovascular dysfunction and inflammation. MAIN OUTCOMES AND RESULTS: Memory impairment was identified at 1 month post-injury and persisted as late as 6 months post-injury. Furthermore, significant immunopathological insult, reductions in global CBF and down-regulation of cerebrovascular-associated markers were observed. CONCLUSIONS: These results demonstrate impaired cognitive behaviour alongside chronic cerebrovascular dysfunction in a mouse model of repetitive mild brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/etiologia , Regulação para Baixo/fisiologia , Actinas/metabolismo , Animais , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Laminina/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/sangue
15.
Ann Neurol ; 75(2): 241-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24243523

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) is a recognized risk factor for later development of neurodegenerative disease. However, the mechanisms contributing to neurodegeneration following TBI remain obscure. METHODS: In this study, we have utilized a novel mild TBI (mTBI) model to examine the chronic neurobehavioral and neuropathological outcomes following single and repetitive mTBI at time points from 6 to 18 months following injury. RESULTS: Our results reveal that at 6, 12, and 18 months after injury, animals exposed to a single mTBI have learning impairments when compared to their sham controls without exhibiting spatial memory retention deficits. In contrast, animals exposed to repetitive injury displayed persistent cognitive deficits, slower rate of learning, and progressive behavioral impairment over time. These deficits arise in parallel with a number of neuropathological abnormalities, including progressive neuroinflammation and continuing white matter degradation up to 12 months following repetitive injury. Neither single nor repetitive mTBI was associated with elevated brain levels of amyloid beta or abnormal tau phosphorylation at 6 or 12 months after injury. INTERPRETATION: Importantly, these data provide evidence that, although a single mTBI produces a clinical syndrome and pathology that remain static in the period following injury, repetitive injuries produce behavioral and pathological changes that continue to evolve many months after the initial injuries. As such, this model recapitulates many aspects described in human studies of TBI, providing a suitable platform on which to investigate the evolving pathologies following mild TBI and potential strategies for therapeutic intervention.


Assuntos
Ansiedade/etiologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Transtornos Cognitivos/etiologia , Transtornos dos Movimentos/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Corpo Caloso/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/patologia , Fragmentos de Peptídeos/metabolismo , Retenção Psicológica/fisiologia , Teste de Desempenho do Rota-Rod , Fatores de Tempo , Proteínas tau/metabolismo
16.
FASEB J ; 28(12): 5311-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25208845

RESUMO

Phospholipid (PL) abnormalities are observed in the cerebrospinal fluid of patients with traumatic brain injury (TBI), suggesting their role in TBI pathology. Therefore, PL levels were examined in a TBI mouse model that received 1.8 mm deep controlled cortical impact injury or craniectomy only (control). The rotarod and Barnes maze acquisition and probe tests were performed within 2 wk after injury, with another probe test performed 3 mo postinjury. Liquid chromatography/mass spectrometry analyses were performed on lipid extracts from several brain regions and plasma from injured and control mice collected at 3 mo postinjury. Compared to controls, injured mice with sensorimotor and learning deficits had decreased levels of cortical and cerebellar phosphatidylcholine (PC) and phosphatidylethanolamine (PE) levels, while hippocampal PC, sphingomyelin and PE levels were elevated. Ether PE levels were lower in the cortices and plasma of injured animals. Polyunsaturated fatty acid-containing PC and PE species, particularly ratios of docosahexaenoic acid (DHA) to arachidonic acid, were lower in the hippocampi and cortices and plasma of injured mice. Given the importance of DHA in maintaining neuronal function and resolving inflammation and of peroxisomes in synthesis of ether PLs, normalizing these PLs may be a useful strategy for treating the chronic pathology of TBI.


Assuntos
Lesões Encefálicas/metabolismo , Lipídeos/análise , Fosfolipídeos/metabolismo , Animais , Estudos de Casos e Controles , Hipocampo/metabolismo , Lipídeos/classificação , Aprendizagem em Labirinto , Camundongos , Teste de Desempenho do Rota-Rod
17.
Nat Biomed Eng ; 8(4): 361-379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486104

RESUMO

Mice adoptively transferred with mouse B cells edited via CRISPR to express human antibody variable chains could help evaluate candidate vaccines and develop better antibody therapies. However, current editing strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that these key B-cell functions can be preserved by directly and simultaneously replacing recombined mouse heavy and kappa chains with those of human antibodies, using a single Cas12a-mediated cut at each locus and 5' homology arms complementary to distal V segments. Cells edited in this way to express the human immunodeficiency virus type 1 (HIV-1) broadly neutralizing antibody 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated mice. The 10-1074 variants isolated from the mice neutralized a global panel of HIV-1 isolates more efficiently than wild-type 10-1074 while maintaining its low polyreactivity and long half-life. We also used the approach to improve the potency of anti-SARS-CoV-2 antibodies against recent Omicron strains. In vivo affinity maturation of B cells edited at their native loci may facilitate the development of broad, potent and bioavailable antibodies.


Assuntos
Anticorpos Neutralizantes , Linfócitos B , COVID-19 , Anticorpos Anti-HIV , HIV-1 , SARS-CoV-2 , Animais , Humanos , Camundongos , Linfócitos B/imunologia , HIV-1/imunologia , SARS-CoV-2/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Afinidade de Anticorpos/imunologia , Sistemas CRISPR-Cas/genética , Vacinas contra COVID-19/imunologia , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos C57BL
18.
Res Sq ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38405717

RESUMO

Many human proteins have been repurposed as biologics for clinical use. These proteins have been engineered with in vitro techniques that improve affinity for their ligands. However, these approaches do not select against properties that impair efficacy such as protease sensitivity or self-reactivity. Here we engineer the B-cell receptor of primary murine B cells to express a human protein biologic without disrupting their ability to affinity mature. Specifically, CD4 domains 1 and 2 (D1D2) of a half-life enhanced-HIV-1 entry inhibitor CD4-Ig (CD4-Ig-v0) were introduced into the heavy-chain loci of murine B cells, which were then adoptively transferred to wild-type mice. After immunization, transferred B cells proliferated, class switched, affinity matured, and efficiently produced D1D2-presenting antibodies. Somatic hypermutations found in the D1D2-encoding region of engrafted B cells improved binding affinity of CD4-Ig-v0 for the HIV-1 envelope glycoprotein (Env) and the neutralization potency of CD4-Ig-v0 by more than ten-fold across a global panel of HIV-1 isolates, without impairing its pharmacokinetic properties. Thus, affinity maturation of non-antibody protein biologics in vivo can guide development of more effective therapeutics.

19.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370774

RESUMO

Many human proteins have been repurposed as biologics for clinical use. These proteins have been engineered with in vitro techniques that improve affinity for their ligands. However, these approaches do not select against properties that impair efficacy such as protease sensitivity or self-reactivity. Here we engineer the B-cell receptor of primary murine B cells to express a human protein biologic without disrupting their ability to affinity mature. Specifically, CD4 domains 1 and 2 (D1D2) of a half-life enhanced-HIV-1 entry inhibitor CD4-Ig (CD4-Ig-v0) were introduced into the heavy-chain loci of murine B cells, which were then adoptively transferred to wild-type mice. After immunization, transferred B cells proliferated, class switched, affinity matured, and efficiently produced D1D2-presenting antibodies. Somatic hypermutations found in the D1D2-encoding region of engrafted B cells improved binding affinity of CD4-Ig-v0 for the HIV-1 envelope glycoprotein (Env) and the neutralization potency of CD4-Ig-v0 by more than ten-fold across a global panel of HIV-1 isolates, without impairing its pharmacokinetic properties. Thus, affinity maturation of non-antibody protein biologics in vivo can guide development of more effective therapeutics.

20.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549915

RESUMO

Long-term memory formation requires anterograde transport of proteins from the soma of a neuron to its distal synaptic terminals. This allows new synaptic connections to be grown and existing ones remodeled. However, we do not yet know which proteins are transported to synapses in response to activity and temporal regulation. Here, using quantitative mass spectrometry, we have profiled anterograde protein cargos of a learning-regulated molecular motor protein kinesin [Aplysia kinesin heavy chain 1 (ApKHC1)] following short-term sensitization (STS) and long-term sensitization (LTS) in Aplysia californica Our results reveal enrichment of specific proteins associated with ApKHC1 following both STS and LTS, as well as temporal changes within 1 and 3 h of LTS training. A significant number of proteins enriched in the ApKHC1 complex participate in synaptic function, and, while some are ubiquitously enriched across training conditions, a few are enriched in response to specific training. For instance, factors aiding new synapse formation, such as synaptotagmin-1, dynamin-1, and calmodulin, are differentially enriched in anterograde complexes 1 h after LTS but are depleted 3 h after LTS. Proteins including gelsolin-like protein 2 and sec23A/sec24A, which function in actin filament stabilization and vesicle transport, respectively, are enriched in cargos 3 h after LTS. These results establish that the composition of anterograde transport complexes undergo experience-dependent specific changes and illuminate dynamic changes in the communication between soma and synapse during learning.


Assuntos
Aplysia , Cinesinas , Animais , Cinesinas/metabolismo , Aprendizagem/fisiologia , Neurônios , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA