Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(3): 1875-1884, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015535

RESUMO

Bioenergy with carbon capture and storage (BECCS) has been identified as a cost-effective negative emission technology that will be necessary to limit global warming to 1.5 °C targets. However, the study of BECCS deployment has mainly focused on large-scale, centralized facilities and geologic sequestration. In this study, we perform technoeconomic analysis of BECCS through pyrolysis technology within a district heating system using locally grown switchgrass. The analysis is based on a unique case study of an existing switchgrass-fueled district heating system in the rural southeastern United States and combines empirical daily energy data with a retrospective analysis of add-on pyrolysis technology with biochar storage. We show that at current heating oil and switchgrass prices, pyrolysis-bioenergy (PyBE) and pyrolysis BECCS (PyBECCS) can each reach economic parity with a fossil fuel-based system when the prices of carbon is $116/Mg CO2-eq and $51/Mg CO2-eq, respectively. In addition, each can reach parity with a direct combustion bioenergy (BE) system when the prices of carbon is $264/Mg CO2-eq and $212/Mg CO2-eq, respectively. However, PyBECCS cannot reach economic parity with BE without revenue from carbon sequestration, while PyBE can, and in some cases, PyBECCS could counterintuitively require more reliance on fossil fuels than both the PyBE case and BE.


Assuntos
Dióxido de Carbono , Pirólise , Carbono , Combustíveis Fósseis , Calefação , Estudos Retrospectivos
2.
Environ Sci Technol ; 44(16): 6464-9, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704248

RESUMO

This work estimates the energy embedded in wasted food annually in the United States. We calculated the energy intensity of food production from agriculture, transportation, processing, food sales, storage, and preparation for 2007 as 8080 +/- 760 trillion BTU. In 1995 approximately 27% of edible food was wasted. Synthesizing these food loss figures with our estimate of energy consumption for different food categories and food production steps, while normalizing for different production volumes, shows that 2030 +/- 160 trillion BTU of energy were embedded in wasted food in 2007. The energy embedded in wasted food represents approximately 2% of annual energy consumption in the United States, which is substantial when compared to other energy conservation and production proposals. To improve this analysis, nationwide estimates of food waste and an updated estimate for the energy required to produce food for U.S. consumption would be valuable.


Assuntos
Conservação de Recursos Energéticos , Alimentos , Resíduos/análise , Agricultura , Manipulação de Alimentos , Termodinâmica , Meios de Transporte , Estados Unidos , United States Department of Agriculture
3.
Sci Total Environ ; 712: 136255, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050400

RESUMO

Reducing food loss and waste (FLW) is widely recognized as an important lever for lowering the environmental impacts of food systems. The United Nations Sustainable Development Agenda includes a goal to reduce FLW by 50% by 2030. Given differences in resource inputs along the food supply chain (FSC), the environmental benefits of FLW reduction will vary by stage of the FSC. Here, we identify the points along the supply chain where a 50% FLW reduction could yield the largest potential environmental benefits, assuming that decreases in consumption propagate back up the supply chain to reduce production. We use an environmentally extended input-output (EEIO) model combined with data on rates of FLW to calculate the scale of the total environmental impacts of the U.S. food system resulting from lost or wasted food. We evaluate the maximum potential environmental benefit resulting from 50% FLW reduction at all possible combinations of six supply chain stages (agricultural production, food processing, distribution/retail, restaurant foodservice, institutional foodservice, and households). We find that FLW reduction efforts should target the foodservice (restaurant) sector, food processing sector, and household consumption. Halving FLW in the foodservice sector has the highest potential to reduce greenhouse gas output and energy use. Halving FLW in the food processing sector could reduce the most land use and eutrophication potential, and reducing household consumption waste could avert the most water consumption. In contrast, FLW reduction at the retail, institutional foodservice, and farm level averts less environmental impact. Our findings may help determine optimal investment in FLW reduction strategies.

4.
Sci Total Environ ; 685: 1240-1254, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390713

RESUMO

Reducing food loss and waste (FLW) is critical for achieving healthy diets from sustainable food systems. Within the United States, 30% to 50% of food produced is lost or wasted. These losses occur throughout multiple stages of the food supply chain from production to consumption. Reducing FLW prevents the waste of land, water, energy, and other resources embedded in food and is therefore essential to improving the sustainability of food systems. Despite the increasing number of studies identifying FLW reduction as a societal imperative, we lack the information needed to assess fully the effectiveness of interventions along the supply chain. In this paper, we synthesize the available literature, data, and methods for estimating the volume of FLW and assessing the full environmental and economic effects of interventions to prevent or reduce FLW in the United States. We describe potential FLW interventions in detail, including policy changes, technological solutions, and changes in practices and behaviors at all stages of the food system from farms to consumers and approaches to conducting economic analyses of the effects of interventions. In summary, this paper comprehensively reviews available information on the causes and consequences of FLW in the United States and lays the groundwork for prioritizing FLW interventions to benefit the environment and stakeholders in the food system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA