Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Proteome Res ; 22(2): 637-646, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512705

RESUMO

Biological networks are often used to represent complex biological systems, which can contain several types of entities. Analysis and visualization of such networks is supported by the Cytoscape software tool and its many apps. While earlier versions of stringApp focused on providing intraspecies protein-protein interactions from the STRING database, the new stringApp 2.0 greatly improves the support for heterogeneous networks. Here, we highlight new functionality that makes it possible to create networks that contain proteins and interactions from STRING as well as other biological entities and associations from other sources. We exemplify this by complementing a published SARS-CoV-2 interactome with interactions from STRING. We have also extended stringApp with new data and query functionality for protein-protein interactions between eukaryotic parasites and their hosts. We show how this can be used to retrieve and visualize a cross-species network for a malaria parasite, its host, and its vector. Finally, the latest stringApp version has an improved user interface, allows retrieval of both functional associations and physical interactions, and supports group-wise enrichment analysis of different parts of a network to aid biological interpretation. stringApp is freely available at https://apps.cytoscape.org/apps/stringapp.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Software , Proteínas , Eucariotos
2.
Parasitol Res ; 122(2): 625-634, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36567399

RESUMO

During its life cycle, Trypanosoma cruzi undergoes physiological modifications in order to adapt to insect vector and mammalian host conditions. Metacyclogenesis is essential, as the parasite acquires the ability to infect a variety of mammalian species, including humans, in which pathology is caused. In this work, the transcriptomes of metacyclic trypomastigotes and epimastigotes were analyzed in order to identify differentially expressed genes that may be involved in metacyclogenesis. Toward this end, in vitro induction of metacyclogenesis was performed and metacyclic trypomastigotes obtained. RNA-Seq was performed on triplicate samples of epimastigotes and metacyclic trypomastigotes. Differential gene expression analysis showed 513 genes, of which 221 were upregulated and 292 downregulated in metacyclic trypomastigotes. The analysis showed that these genes are related to biological processes relevant in metacyclogenesis. Within these processes, we found that most of the genes associated with infectivity and gene expression regulation were upregulated in metacyclic trypomastigotes, while genes involved in cell division, DNA replication, differentiation, cytoskeleton, and metabolism were mainly downregulated. The participation of some of these genes in T. cruzi metacyclogenesis is of interest, as they may be used as potential therapeutic targets in the design of new drugs for Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Animais , Trypanosoma cruzi/fisiologia , Colômbia , Regulação da Expressão Gênica , Diferenciação Celular , Mamíferos
3.
Genomics ; 114(6): 110517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306958

RESUMO

Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium­calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.


Assuntos
Agave , Agave/genética , Brasil , Aspergillus/genética
4.
Rheumatol Int ; 40(3): 489-497, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31599343

RESUMO

Systemic sclerosis (SSc) is a rare immune-mediated vasculopathy characterized by fibrosis of the skin and internal organs. Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene producing α-galactosidase-A enzyme (α-Gal A) deficiency. Being a systemic disease, cardiac involvement in FD has a high mortality rate due to heart failure and arrhythmia. The coexistence of these two entities has not been reported previously. We describe the case of a female patient with limited SSc (lcSSc), a diagnosis based on the presence of sclerodactyly, Raynaud phenomenon, microvascular involvement, and positive anti-centromere antibodies. On follow-up, she developed chest pain, a second-degree A-V block, and restrictive cardiomyopathy (without cardiovascular risk factors). Although heart involvement is common in these two entities, the abnormal thickening of lateral and inferior wall, the infiltration pattern and the conduction system disorders presented herein are more characteristic in a heterozygous female with a cardiac variant of FD. The diagnosis of FD was confirmed with high globotriaosylsphingosine (Lyso-Gb3) levels and identification of GLA gene mutation. The patient was treated with enzymatic replacement (agalsidase alpha) following mild improvement in ventricular mass at 6th month, without clinical deterioration. The related literature on SSc associated with FD is also reviewed.


Assuntos
Cardiomiopatia Restritiva/complicações , Doença de Fabry/complicações , Escleroderma Sistêmico/complicações , Feminino , Humanos , Pessoa de Meia-Idade
5.
J Dairy Sci ; 103(1): 877-883, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733866

RESUMO

This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 4 fecal blaCMY-2-producing Escherichia coli isolated from Holstein dairy calves on the same farm using whole-genome sequencing. Genomic analysis revealed that 3 of the 4 isolates shared similar genetic features, including sequence type (ST), serotype, plasmid characteristics, insertion ST, and virulence genes. In addition to genes encoding for complex multidrug resistance efflux systems, all 4 isolates were carriers of genes conferring resistance to ß-lactams (blaCMY-2, blaTEM-1B), tetracyclines (tetA, tetB, tetD), aminoglycosides [aadA1, aph(3")-lb, aph(6)-ld], sulfonamides (sul2), and trimethoprim (dfrA1). We also detected 4 incompatibility plasmid groups: Inc.F, Inc.N, Inc.I, and Inc.Q. A novel ST showing a new purA and mdh allelic combination was found. The 4 isolates were likely enterotoxigenic pathotypes of E. coli, based on serotype and presence of the plasmid Inc.FII(pCoo). This study provides information for comparative genomic analysis of AMR genes and mobile genetic elements. This analysis could give some explanation to the multidrug resistance characteristics of bacteria colonizing the intestinal tract of dairy calves in the first few weeks of life.


Assuntos
Bovinos/microbiologia , Escherichia coli/genética , Animais , Antibacterianos/farmacologia , Indústria de Laticínios , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Fezes/microbiologia , Feminino , Plasmídeos , Virulência/genética , Sequenciamento Completo do Genoma , beta-Lactamases/biossíntese
6.
PeerJ ; 11: e15235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434868

RESUMO

Background: The Andean condor (Vultur gryphus) is the largest scavenger in South America. This predatory bird plays a crucial role in their ecological niche by removing carcasses. We report the first metagenomic analysis of the Andean condor gut microbiome. Methods: This work analyzed shotgun metagenomics data from a mixture of fifteen captive Chilean Andean condors. To filter eukaryote contamination, we employed BWA-MEM v0.7. Taxonomy assignment was performed using Kraken2 and MetaPhlAn v2.0 and all filtered reads were assembled using IDBA-UD v1.1.3. The two most abundant species were used to perform a genome reference-guided assembly using MetaCompass. Finally, we performed a gene prediction using Prodigal and each gene predicted was functionally annotated. InterproScan v5.31-70.0 was additionally used to detect homology based on protein domains and KEGG mapper software for reconstructing metabolic pathways. Results: Our results demonstrate concordance with the other gut microbiome data from New World vultures. In the Andean condor, Firmicutes was the most abundant phylum present, with Clostridium perfringens, a potentially pathogenic bacterium for other animals, as dominating species in the gut microbiome. We assembled all reads corresponding to the top two species found in the condor gut microbiome, finding between 94% to 98% of completeness for Clostridium perfringens and Plesiomonas shigelloides, respectively. Our work highlights the ability of the Andean condor to act as an environmental reservoir and potential vector for critical priority pathogens which contain relevant genetic elements. Among these genetic elements, we found 71 antimicrobial resistance genes and 1,786 virulence factors that we associated with several adaptation processes.


Assuntos
Falconiformes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Metagenômica , Aclimatação , Chile , Clostridium perfringens
7.
Front Genet ; 12: 649764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394179

RESUMO

Gene Regulatory Networks (GRNs) allow the study of regulation of gene expression of whole genomes. Among the most relevant advantages of using networks to depict this key process, there is the visual representation of large amounts of information and the application of graph theory to generate new knowledge. Nonetheless, despite the many uses of GRNs, it is still difficult and expensive to assign Transcription Factors (TFs) to the regulation of specific genes. ChIP-Seq allows the determination of TF Binding Sites (TFBSs) over whole genomes, but it is still an expensive technique that can only be applied one TF at a time and requires replicates to reduce its noise. Once TFBSs are determined, the assignment of each TF and its binding sites to the regulation of specific genes is not trivial, and it is often performed by carrying out site-specific experiments that are unfeasible to perform in all possible binding sites. Here, we addressed these relevant issues with a two-step methodology using Drosophila melanogaster as a case study. First, our protocol starts by gathering all transcription factor binding sites (TFBSs) determined with ChIP-Seq experiments available at ENCODE and FlyBase. Then each TFBS is used to assign TFs to the regulation of likely target genes based on the TFBS proximity to the transcription start site of all genes. In the final step, to try to select the most likely regulatory TF from those previously assigned to each gene, we employ GENIE3, a random forest-based method, and more than 9,000 RNA-seq experiments from D. melanogaster. Following, we employed known TF protein-protein interactions to estimate the feasibility of regulatory events in our filtered networks. Finally, we show how known interactions between co-regulatory TFs of each gene increase after the second step of our approach, and thus, the consistency of the TF-gene assignment. Also, we employed our methodology to create a network centered on the Drosophila melanogaster gene Hr96 to demonstrate the role of this transcription factor on mitochondrial gene regulation.

8.
Front Vet Sci ; 7: 530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102540

RESUMO

Staphylococcus aureus represent a serious threat to public health due to food safety, antibiotic resistance, and the potential zoonotic transmission of strains between dairy cattle and humans. Biofilm formation by S. aureus results in chronicity of the infections which confers protection against the immune response and antibiotics. Likewise, biofilm allows the exchange of mobile genetic material among different strains through microbial interactions inside the matrix. In Colombia, where S. aureus continues to be one of the main pathogens isolated from bovine intramammary infections and where milking by hand is highly frequent, there are knowledge gaps on the zoonotic potential of the strains. Therefore, the aim of this work was to characterize genotypically and phenotypically the S. aureus Sa1FB strain with strong biofilm production and to perform genomic and phenotypic comparisons with other relevant S. aureus strains (native and references strains). These results show a highly productive strain of biofilm and a low ability of cell invasion compared to the other two native strains. In addition, high genomic similarity between S. aureus Sa1FB and the reference strains was observed, despite of the differences reported at the clinical level. However, Sa1FB exhibited special features in terms of mobile genetic elements, highlighting its ability to accept foreign genetic material. Indeed, this could increase mutation, pathogenesis, and adaptability to new hosts, representing a risk for people in contact with the milk obtained from animals infected with these strains. These results present the relevance of surveillance for early detection of emergent clones with zoonotic potential, which reduces the risk of occupational exposure and their spread in the community.

9.
Braz J Microbiol ; 51(3): 1259-1267, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32221908

RESUMO

Bacteria inside biofilms are more persistent and resistant to stress conditions found in the production environment of food processing plants, thus representing a constant risk for product safety and quality. Therefore, the aim of this study was to characterize, using 16S rRNA sequencing, the bacterial communities from biofilms found in four food processing plants (P1, P2, P3, and P4). In total, 50 samples from these four processing plants were taken after cleaning and disinfection processes. Four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroides represented over 94% of the operational taxonomic units found across these four plants. A total of 102 families and 189 genera were identified. Two genera, Pseudomonas spp. and Acinetobacter spp., were the most frequently found (93.47%) across the four plants. In P1, Pseudomonas spp. and Lactobacillus spp. were the dominant genera, whereas Lactobacillus spp. and Streptococcus spp. were identified in P2. On the other hand, biofilms found in P3 and P4 mainly consisted of Pseudomonas spp. and Acinetobacter spp. Our results indicate that different bacterial genera of interest to the food industry due to their ability to form biofilm and affect food quality can coexist inside biofilms, and as such, persist in production environments, representing a constant risk for manufactured foods. In addition, the core microbiota identified across processing plants evaluated was probably influenced by type of food produced and cleaning and disinfection processes performed in each one of these.


Assuntos
Bactérias/genética , Biofilmes , Contaminação de Equipamentos/estatística & dados numéricos , Manipulação de Alimentos/instrumentação , Microbiota , Bactérias/classificação , Bactérias/isolamento & purificação , Colômbia , Desinfecção , Metagenoma , Metagenômica
10.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-33363714

RESUMO

Since 2014, the ISCB Latin American Student Council Symposium (LA-SCS) serves as the main biannual activity where students from all levels, postdocs and early researchers from the entire Latin American region can gather to discuss recent advances in the fields of bioinformatics and computational biology. This time we faced a major unexpected obstacle, a worldwide pandemic that has completely disrupted human activities at a planetary scale. Countless conferences have been either canceled, reprogrammed for the next year or moved to a virtual format. However, thanks to an important strengthening of the Latin American student network and the creation of several new RSGs in the continent, we were able to get together a fearless team that aimed to overcome the pandemic obstacles and still organise the 4th LA-SCS. Here we summarize our experiences in our first virtual symposium.


Assuntos
COVID-19 , Biologia Computacional/organização & administração , Congressos como Assunto/organização & administração , Humanos , América Latina , Pandemias , Estudantes
11.
Biomedica ; 29(2): 218-31, 2009 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-20128347

RESUMO

INTRODUCTION: Although the integration of human T-cell lymphotropic virus type I into the T-cells is not a random process, the mechanistic details are not understood. OBJECTIVES: The characteristics of the flanking host chromatin were evaluated at the integration sites in adult T-cell leukaemia/lymphoma (ATLL) patients infected with the virus. MATERIALS AND METHODS: From seven leukemic Colombian patients positive for the human T-cell lymphotropic virus type I (HTLV-I), lymphocyte DNA samples were extracted and amplified by inverse polymerase chain reaction (IPCR). Clonal expansion and human genome nucleotide composition in an extension of 50 bp was determined. To establish the characteristics of the human genome flanking provirus, 61 IPCR sequences from Colombian and Japanese ATLL patients, were analyzed in silico to obtain insights about the genomic structure, functions and nature of associated chromatin. RESULTS: The clonal expansion of cell clones was predominantly oligoclonal. From 61 IPCR sequences, 155 alignments with homology higher than 95% (e-value < 0.05) were screened. Seventy-five percent of those sequences corresponded to non coding elements that include repetitive and non-repetitive DNA. Fifty percent of the proviral integrations were associated with chromosomes of A and B groups. Viral DNA integration tended to favor exons of genes that replicated early, controlled the cell cycle, or were involved in signal transduction. CONCLUSIONS: The results indicated that HTLV-I integration was preferentially directed towards genomic environments with high C:G content, and toward genes that replicate early, regulate cell cycle or involved with signal transduction.


Assuntos
Genoma Viral , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucemia-Linfoma de Células T do Adulto/virologia , Provírus/genética , Linfócitos T/virologia , Integração Viral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Composição de Bases , Transformação Celular Viral/genética , Criança , Pré-Escolar , Células Clonais/virologia , Replicação do DNA/genética , DNA de Neoplasias/genética , DNA Viral/genética , Feminino , Genes cdc , Genes pX , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Provírus/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Adulto Jovem
12.
Front Immunol ; 10: 212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815000

RESUMO

The study of molecular host-parasite interactions is essential to understand parasitic infection and adaptation within the host system. As well, prevention and treatment of infectious diseases require a clear understanding of the molecular crosstalk between parasites and their hosts. Yet, large-scale experimental identification of host-parasite molecular interactions remains challenging, and the use of computational predictions becomes then necessary. Here, we propose a computational integrative approach to predict host-parasite protein-protein interaction (PPI) networks resulting from the human infection by 15 different eukaryotic parasites. We used an orthology-based approach to transfer high-confidence intraspecies interactions obtained from the STRING database to the corresponding interspecies homolog protein pairs in the host-parasite system. Our approach uses either the parasites predicted secretome and membrane proteins, or only the secretome, depending on whether they are uni- or multi-cellular, respectively, to reduce the number of false predictions. Moreover, the host proteome is filtered for proteins expressed in selected cellular localizations and tissues supporting the parasite growth. We evaluated the inferred interactions by analyzing the enriched biological processes and pathways in the predicted networks and their association with known parasitic invasion and evasion mechanisms. The resulting PPI networks were compared across parasites to identify common mechanisms that may define a global pathogenic hallmark. We also provided a study case focusing on a closer examination of the human-S. mansoni predicted interactome, detecting central proteins that have relevant roles in the human-S. mansoni network, and identifying tissue-specific interactions with key roles in the life cycle of the parasite. The predicted PPI networks can be visualized and downloaded at http://orthohpi.jensenlab.org.


Assuntos
Interações Hospedeiro-Parasita , Parasitos/fisiologia , Doenças Parasitárias/parasitologia , Animais , Biologia Computacional/métodos , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Modelos Biológicos , Doenças Parasitárias/genética , Doenças Parasitárias/imunologia , Doenças Parasitárias/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/metabolismo
13.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31508204

RESUMO

Regional Student Groups (RSGs) of the International Society for Computational Biology Student Council (ISCB-SC) have been instrumental to connect computational biologists globally and to create more awareness about bioinformatics education. This article highlights the initiatives carried out by the RSGs both nationally and internationally to strengthen the present and future of the bioinformatics community. Moreover, we discuss the future directions the organization will take and the challenges to advance further in the ISCB-SC main mission: "Nurture the new generation of computational biologists".


Assuntos
Biologia Computacional , Estudantes , Humanos , Relações Interprofissionais
14.
Methods Mol Biol ; 1819: 153-173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30421403

RESUMO

In host-parasite systems, protein-protein interactions are key to allow the pathogen to enter the host and persist within the host. The study of host-parasite molecular communication improves the understanding the mechanisms of infection, evasion of the host immune system and tropism across different tissues. Current trends in parasitology focus on unraveling host-parasite protein-protein interactions to aid the development of new strategies to combat pathogenic parasites with better treatments and prevention mechanisms. Due to the complexity of capturing experimentally these interactions, computational approaches integrating data from different sources (mainly "omics" data) become key to complement or support experimental approaches. Here, we focus on the application of experimental and computational methods in the prediction of host-parasite interactions and highlight the potential of each of these methods in specific contexts.


Assuntos
Simulação por Computador , Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos
15.
Int J Parasitol ; 47(9): 529-544, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28336271

RESUMO

Helminths cause a number of medical and agricultural problems and are a major cause of parasitic infections in humans, animals and plants. Comparative analysis of helminth genes and genomes are important to understand the genomic biodiversity and evolution of parasites and their hosts in terms of different selective pressures in their habitats. The interactions between the infective organisms and their hosts are mediated in large part by secreted proteins, known collectively as the "secretome". Proteins secreted by parasites are able to modify a host's environment and modulate their immune system. The composition and function of this set of proteins varies depending on the ecology, lifestyle and environment of an organism. The present study aimed to predict, in silico, the secretome in 44 helminth species including Nematoda (31 species) and Platyhelminthes (13 species) and, understand the diversity and evolution of secretomes. Secretomes from plant helminths range from 7.6% (943 proteins) to 13.9% (2,077 proteins) of the filtered proteome with an average of 10.2% (1,412 proteins) and from free-living helminths range from 4.4% (870 proteins) to 13% (3,121 proteins) with an average of 9.8% (2,126 proteins), respectively, and thus are considerably larger secretomes in relation to animal helminth secretomes which range from 4.2% (431 proteins) to 11.8% (2,419 proteins) of the proteomes, with an average of 7.1% (804 proteins). Across 44 secretomes in different helminth species, we found five conserved domains: (i) PF00014 (Kunitz/Bovine pancreatic trypsin inhibitor domain), (ii) PF00046 (Homeobox domain), (iii) PF00188 (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), (iv) PF00085 (Thioredoxin) and (v) PF07679 (Immunoglobulin I-set domain). Our results detected secreted proteins associated with invasion, infection, adhesion and immunoregulation processes as protease inhibitors and cytokines, among other functions. In summary, this study will contribute towards the understanding of host-parasite interactions and possibly identify new molecular targets for the treatment or diagnosis of helminthiases.


Assuntos
Proteínas de Helminto/metabolismo , Helmintos/metabolismo , Animais , Biodiversidade , Sequência Conservada , Genoma , Proteínas de Helminto/química , Proteínas de Helminto/fisiologia , Helmintos/classificação , Helmintos/genética , Helmintos/fisiologia , Interações Hospedeiro-Parasita , Estilo de Vida , Filogenia , Plantas/parasitologia , Domínios Proteicos , Sinais Direcionadores de Proteínas/fisiologia , Especificidade da Espécie
17.
Nat Commun ; 8: 15451, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508897

RESUMO

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , Genoma , Esquistossomose mansoni/transmissão , Comunicação Animal , Animais , Biomphalaria/imunologia , Elementos de DNA Transponíveis , Evolução Molecular , Água Doce , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Feromônios , Proteoma , Schistosoma mansoni , Análise de Sequência de DNA , Estresse Fisiológico
18.
Front Genet ; 5: 206, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071834

RESUMO

The cystatin family comprises cysteine protease inhibitors distributed in 3 subfamilies (I25A-C). Family members lacking cystatin activity are currently unclassified. Little is known about the evolution of Schistosoma cystatins, their physiological roles, and expression patterns in the parasite life cycle. The present study aimed to identify cystatin homologs in the predicted proteome of three Schistosoma species and other Platyhelminthes. We analyzed the amino acid sequence diversity focused in the identification of protein signatures and to establish evolutionary relationships among Schistosoma and experimentally validated human cystatins. Gene expression patterns were obtained from different developmental stages in Schistosoma mansoni using microarray data. In Schistosoma, only I25A and I25B proteins were identified, reflecting little functional diversification. I25C and unclassified subfamily members were not identified in platyhelminth species here analyzed. The resulting phylogeny placed cystatins in different clades, reflecting their molecular diversity. Our findings suggest that Schistosoma cystatins are very divergent from their human homologs, especially regarding the I25B subfamily. Schistosoma cystatins also differ significantly from other platyhelminth homologs. Finally, transcriptome data publicly available indicated that I25A and I25B genes are constitutively expressed thus could be essential for schistosome life cycle progression. In summary, this study provides insights into the evolution, classification, and functional diversification of cystatins in Schistosoma and other Platyhelminthes, improving our understanding of parasite biology and opening new frontiers in the identification of novel therapeutic targets against helminthiases.

19.
Biomedica ; 34(2): 237-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967929

RESUMO

INTRODUCTION: Despite efforts to control malaria, around 10% of the world population is at risk of acquiring this disease. Plasmodium falciparum accounts for the majority of severe cases and deaths. Malaria control programs have failed due to the therapeutic failure of first-line antimalarials and to parasite resistance. Thus, new and better therapeutic alternatives are required. Proteomic analysis allows determination of protein expression levels under drug pressure, leading to the identification of new therapeutic drug targets and their mechanisms of action. OBJECTIVE: The aim of this study was to analyze qualitatively the expression of P.falciparum trophozoite proteins (strain ITG2), after exposure to antimalarial drugs, through a proteomic approach. MATERIALS AND METHODS: In vitro cultured synchronized parasites were treated with quinine, mefloquine and the natural antiplasmodial diosgenone. Protein extracts were prepared and analyzed by two-dimensional electrophoresis. The differentially expressed proteins were selected and identified by MALDI-TOF mass spectrometry. RESULTS: The following proteins were identified among those differentially expressed in the parasite in the presence of the drugs tested: enolase (PF10_0155), calcium-binding protein (PF11_0098), chaperonin (PFL0740c), the host cell invasion protein (PF10_0268) and proteins related to redox processes (MAL8P1.17). These findings are consistent with results of previous studies where the parasite was submitted to pressure with other antimalarial drugs. CONCLUSION: The observed changes in the P. falciparum trophozoite protein profile induced by antimalarial drugs involved proteins mainly related to the general stress response.


Assuntos
Antiprotozoários/farmacologia , Mefloquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/biossíntese , Quinina/farmacologia , Compostos de Espiro/farmacologia , Triterpenos/farmacologia , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Eritrócitos/parasitologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/isolamento & purificação , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Dados de Sequência Molecular , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteoma , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA