Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 146(22): 15393-15402, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767283

RESUMO

Quinone-based electrodes using carbonyl redox reactions are promising candidates for aqueous energy storage due to their high theoretical specific capacity and high-rate performance. However, the proton storage manners and their influences on the electrochemical performance of quinone are still not clear. Herein, we reveal that proton storage could determine the products of the enol conversion and the electrochemical stability of the organic electrode. Specifically, the protons preferentially coordinated with the prototypical pyrene-4,5,9,10-tetraone (PTO) cathode, and increasing the proton concentration in the electrolyte can improve its working potentials and cycling stability by tailoring the enol conversion reaction. We also found that exploiting Al2(SO4)3 as a pH buffer can increase the energy density of the Zn||PTO batteries from 242.8 to 284.6 Wh kg-1. Our research has a guiding significance for emphasizing proton storage of organic electrodes based on enol conversion reactions and improving their electrochemical performance.

2.
Angew Chem Int Ed Engl ; 63(5): e202317652, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38086771

RESUMO

High iodine loading and high-temperature adaptability of the iodine cathode are prerequisites to achieving high energy density at full battery level and promoting the practical application for the zinc-iodine (Zn-I2 ) battery. However, it would aggravate the polyiodide shuttle effect when employing high iodine loading and working temperature. Here, a sustainable cationic cellulose nanofiber (cCNF) was employed to confine the active iodine species through strong physiochemical adsorption to enlarge the iodine loading and stabilize it even at high temperatures. The cCNF could accommodate dual-functionality by enlarging the iodine loading and suppressing the polyiodide shuttle effect, owing to the unique framework structure with abundant surface positive charges. As a result, the iodine cathode based on the cCNF could deliver high iodine mass loading of 14.1 mg cm-2 with a specific capacity of 182.7 mAh g-1 , high areal capacity of 2.6 mAh cm-2 , and stable cycling over 3000 cycles at 2 A g-1 , thus enabling a high energy density of 34.8 Wh kg-1 and the maximum power density of 521.2 W kg-1 at a full Zn-I2 battery level. In addition, even at a high temperature of 60 °C, the Zn-I2 battery could still deliver a stable cycling.

3.
Angew Chem Int Ed Engl ; 63(22): e202403504, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38563637

RESUMO

The rechargeable aqueous Zn||MnO2 chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO2/Mn2+ conversion and Zn2+/H+ intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO2/Mn2+ conversion, Zn2+ intercalation, and H+ intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO2 battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn2+-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO2/Mn2+ conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn2+ and H+ ions in the MnO2 cathode, are specified as the exclusive intercalation of Zn2+ ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm-2 and high specific energy of 0.858 Wh cm-2, even at a low MnO2 loading mass of 0.5 mg cm-2 are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO2 batteries.

4.
Angew Chem Int Ed Engl ; : e202407589, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703065

RESUMO

Directly electrochemical conversion of nitrate (NO3 -) is an efficient and environmentally friendly technology for ammonia (NH3) production but is challenged by highly selective electrocatalysts. High-entropy alloys (HEAs) with unique properties are attractive materials in catalysis, particularly for multi-step reactions. Herein, we first reported the application of HEA (FeCoNiAlTi) for electrocatalytic NO3 - reduction to NH3 (NRA). The bulk HEA is active for NRA but limited by the unsatisfied NH3 yield of 0.36 mg h-1 cm-2 and Faradaic efficiency (FE) of 82.66 %. Through an effective phase engineering strategy, uniform intermetallic nanoparticles are introduced on the bulk HEA to increase electrochemical active surface area and charge transfer efficiency. The resulting nanostructured HEA (n-HEA) delivers enhanced electrochemical NRA performance in terms of NH3 yield (0.52 mg h-1 cm-2) and FE (95.23 %). Further experimental and theoretical investigations reveal that the multi-active sites (Fe, Co, and Ni) dominated electrocatalysis for NRA over the n-HEA. Notably, the typical Co sites exhibit the lowest energy barrier for NRA with *NH2 to *NH3as the rate-determining step.

5.
Angew Chem Int Ed Engl ; 62(14): e202218745, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705089

RESUMO

Aqueous rechargeable batteries are prospective candidates for large-scale grid energy storage. However, traditional anode materials applied lack acid-alkali co-tolerance. Herein, we report a covalent organic framework containing pyrazine (C=N) and phenylimino (-NH-) groups (HPP-COF) as a long-cycle and high-rate anode for both acidic and alkaline batteries. The HPP-COF's robust covalent linkage and the hydrogen bond network between -NH- and water molecules collectively improve the acid-alkaline co-tolerance. More importantly, the hydrogen bond network promotes the rapid transport of H+ /OH- by the Grotthuss mechanism. As a result, the HPP-COF delivers a superior capacity and cycle stability (66.6 mAh g-1 @ 30 A g-1 , over 40000 cycles in 1 M H2 SO4 electrolyte; 91.7 mAh g-1 @ 100 A g-1 , over 30000 cycles @ 30 A g-1 in 1 M NaOH electrolyte). The work opens a new direction for the structural design and application of COF materials in acidic and alkaline batteries.

6.
Angew Chem Int Ed Engl ; 62(23): e202303292, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017579

RESUMO

Electrolyte environments, including cations, anions, and solvents are critical for the performance delivery of cathodes of batteries. Most works focused on interactions between cations and cathode materials, in contrast, there is a lack of in-depth research on the correlation between anions and cathodes. Here, we systematically investigated how anions manipulate the coulombic efficiency (CE) of cathodes of zinc batteries. We take intercalation-type V2 O5 and conversion-type I2 cathodes as typical cases for profound studies. It was found that electronic properties of anions, including charge density and its distribution, can tune conversion or intercalation reactions, leading to significant CE differences. Using operando visual Raman microscopy and theoretical simulations, we confirm that competitive coordination between anions and I- can regulate CEs by modulating polyiodide diffusion rates in Zn-I2 cells. In Zn-V2 O5 cells, anion-tuned solvation structures vastly affect CEs through varying Zn2+ intercalation kinetics. Conversion I2 cathode achieves a 99 % CE with highly electron-donating anions, while anions with preferable charge structures that interact strongly with Zn2+ afford an intercalation V2 O5 a nearly 100 % CE. Understanding the mechanism of anion-governed CEs will help us evaluate compatibility of electrolytes with electrodes, thus providing a guideline for anion selection and electrolyte design for high-energy, long-cycling zinc batteries.

7.
Angew Chem Int Ed Engl ; 62(48): e202309930, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37828577

RESUMO

Metal-organic framework-based materials are promising single-site catalysts for electrocatalytic nitrate (NO3 - ) reduction to value-added ammonia (NH3 ) on account of well-defined structures and functional tunability but still lack a molecular-level understanding for designing the high-efficient catalysts. Here, we proposed a molecular engineering strategy to enhance electrochemical NO3 - -to-NH3 conversion by introducing the carbonyl groups into 1,2,4,5-tetraaminobenzene (BTA) based metal-organic polymer to precisely modulate the electronic state of metal centers. Due to the electron-withdrawing properties of the carbonyl group, metal centers can be converted to an electron-deficient state, fascinating the NO3 - adsorption and promoting continuous hydrogenation reactions to produce NH3 . Compared to CuBTA with a low NO3 - -to-NH3 conversion efficiency of 85.1 %, quinone group functionalization endows the resulting copper tetraminobenzoquinone (CuTABQ) distinguished performance with a much higher NH3 FE of 97.7 %. This molecular engineering strategy is also universal, as verified by the improved NO3 - -to-NH3 conversion performance on different metal centers, including Co and Ni. Furthermore, the assembled rechargeable Zn-NO3 - battery based on CuTABQ cathode can deliver a high power density of 12.3 mW cm-2 . This work provides advanced insights into the rational design of metal complex catalysts through the molecular-level regulation for NO3 - electroreduction to value-added NH3 .

8.
Angew Chem Int Ed Engl ; 61(30): e202203453, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35532543

RESUMO

Redox-active organic materials, as a new generation of sustainable resources, are receiving increasing attention in zinc-ion batteries (ZIBs) due to their resource abundance and tunable structure. However, organic molecules with high potential are rare, and the voltage of most reported organic cathode-based ZIBs is less than 1.2 V. Herein, we explored the redox process of p-type organics and figured out the relationship between energy change and voltage output during the process. Then, we proposed a dual-step strategy to effectively tune the energy change and eventually improve the output voltage of the organic electrode. Combining the regulation of the electron cloud of organic molecules and the manipulation of the solvation structure, the output voltage of an organosulfur compound based ZIB was greatly increased from 0.8 V to 1.7 V. Our results put forward a specific pathway to improve the working voltage and lay the foundation for the practical application of organic electrodes.

9.
Angew Chem Int Ed Engl ; 61(35): e202206471, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35652288

RESUMO

Aqueous batteries that use metal anodes exhibit maximum anodic capacity, whereas the energy density is still unsatisfactory partially due to the high redox potential of the metal anode. Current metal anodes are plagued by the dilemma that the redox potential of Zn is not low enough, whereas Al, Mg, and others with excessively low redox potential cannot work properly in aqueous electrolytes. Mn metal with a suitably low redox potential is a promising candidate, which was rarely explored before. Here, we report a rechargeable aqueous Mn-metal battery enabled by a well-designed electrolyte and robust inorganic-organic interfaces. The inorganic Sn-based interface with a bottom-up microstructure was constructed to preliminarily suppress water decomposition. With this bubble-free interface, the organic interface can be formed via an esterification reaction of sucrose triggered by acyl chloride in the electrolyte, generating a dense physical shield that isolates water while permitting Mn2+ diffusion. Hence, a Mn symmetric cell achieves a superior plating/stripping stability for 200 hours, and a Mn||V2 O5 battery maintains approximately 100 % capacity after 200 cycles. Moreover, the Mn||V2 O5 battery realizes a much higher output voltage than that of the Zn||V2 O5 battery, evidencing the possibility of increasing the energy density through using a Mn anode. This work develops a systematic strategy to stabilize a Mn-metal anode for Mn-metal batteries, opening a new door towards enhanced voltage of aqueous batteries.

10.
Angew Chem Int Ed Engl ; 61(9): e202113576, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931752

RESUMO

A single-electron transfer mode coupled with the shuttle behavior of organic iodine batteries results in insufficient capacity, a low redox potential, and poor cycle durability. Sluggish kinetics are well known in conventional lithium-iodine (Li-I) batteries, inferior to other conversion congeners. Herein, we demonstrate new two-electron redox chemistry of I- /I+ with inter-halogen cooperation based on a developed haloid cathode. The new iodide-ion conversion battery exhibits a state-of-art capacity of 408 mAh gI-1 with fast redox kinetics and superior cycle stability. Equipped with a newly emerged 3.42 V discharge voltage plateau, a recorded high energy density of 1324 Wh kgI-1 is achieved. Such robust redox chemistry is temperature-insensitive and operates efficiently at -30 °C. With systematic theoretical calculations and experimental characterizations, the formation of Cl-I+ species and their functions are clarified.

11.
Histochem Cell Biol ; 156(5): 437-448, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34312706

RESUMO

Multiple sclerosis (MS) is characterized by neuroinflammation and neurodegeneration, whose precise processes are not fully understood. Diacylglycerol kinase (DGK) isozymes of α, ß, γ and ζ expressed abundantly in the brain and/or the immune system, may be regulatory targets for MS. In this study, we analyzed the four DGK isozymes along the induction, peak and recovery phases in an experimental autoimmune encephalomyelitis (EAE) rat model of MS. The expression of these DGK isozymes and the diacylglycerol (DAG) pathway in the EAE rat brainstems were analyzed by qRT-PCR, immunohistochemistry, immunofluorescence double staining, western blotting and ELISA. Our results showed that the mRNA content of the four DGK isozymes decreased significantly, and their immunoreactivity in myelin sheathes (DGKα, ß) and neurons (DGKγ, ζ) became weaker at the beginning of the induction phase. With the progressive increase in clinical signs, DGKα, DGKγ and DGKζ mRNA increased and DGKß mRNA decreased, and microglia were involved in the formation of perivascular cuffing. In the peak phase, both DGKα and DGKζ were expressed in neurons and inflammatory cells, and DGKζ was also positive in microglia. During the recovery phase, the mRNA content and immunoreactivity of these DGK isozymes generally reached normal levels. Moreover, our results revealed that changes in DAG accumulation and PKCδ phosphorylation were almost the same as those of DGKα and DGKζ mRNA. In summary, the four DGK isozymes are involved in the EAE process. The predominant and broad presence of DGKα and DGKζ suggests that they may regulate the pathological process by attenuating DAG/PKCδ pathway signaling during EAE evolution.


Assuntos
Diacilglicerol Quinase/genética , Encefalomielite Autoimune Experimental/genética , Animais , Diacilglicerol Quinase/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Ratos , Ratos Wistar
12.
J Anat ; 236(3): 540-548, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670395

RESUMO

Since embryonic heart development is a complex process and acquisition of human embryonic specimens is challenging, the mechanism by which the embryonic conduction system develops remains unclear. Herein, we attempt to gain insights into this developmental process through immunohistochemical staining and 3D reconstructions. Expression analysis of T-box transcription factor 3, cytoskeleton desmin, and nucleoskeleton lamin A protein in human embryos in Carnegie stages 11-20 showed that desmin is preferentially expressed in the myocardium of the central conduction system compared with the peripheral conduction system, and is co-expressed with T-box transcription factor 3 in the central conduction system. Further, lamin A was first expressed in the embryonic ventricular trabeculations, where the terminal ramifications of the peripheral conduction system develop, and extended progressively to all parts of the central conduction system. The uncoupled spatiotemporal distribution pattern of lamin A and desmin indicated that the association of cytoskeleton desmin and nucleoskeleton lamin A may be a late event in human embryonic heart development. Compared with model animals, our data provide a direct morphological basis for understanding the arrhythmogenesis caused by mutations in human DES and LMNA genes.


Assuntos
Desmina/metabolismo , Sistema de Condução Cardíaco/metabolismo , Coração/embriologia , Lamina Tipo A/metabolismo , Miocárdio/metabolismo , Humanos
13.
BMC Genomics ; 20(1): 242, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909886

RESUMO

BACKGROUND: Brassica oleracea exhibits extensive phenotypic diversity. As an important trait, petal color varies among different B. oleracea cultivars, enabling the study of the genetic basis of this trait. In a previous study, the gene responsible for petal color in B. oleracea was mapped to a 503-kb region on chromosome 3, but the candidate gene has not yet been identified. RESULTS: In the present study, we report that the candidate gene was further delineated to a 207-kb fragment. BoCCD4, a homolog of the Arabidopsis carotenoid cleavage dioxygenase 4 (CCD4) gene, was selected for evaluation as the candidate gene. Sequence analysis of the YL-1 inbred line revealed three insertions/deletions and 34 single-nucleotide polymorphisms in the coding region of BoCCD4. Functional complementation showed that BoCCD4 from the white-petal inbred line 11-192 can rescue the yellow-petal trait of YL-1. Expression analysis revealed that BoCCD4 is exclusively expressed in petal tissue of white-petal plants, and phylogenetic analysis indicated that CCD4 homologs may share evolutionarily conserved roles in carotenoid metabolism. These findings demonstrate that BoCCD4 is responsible for white/yellow petal color variation in B. oleracea. CONCLUSIONS: This study demonstrated that function loss of BoCCD4, a homolog of Arabidopsis CCD4, is responsible for yellow petal color in B. oleracea.


Assuntos
Brassica/anatomia & histologia , Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Dioxigenases/genética , Brassica/genética , Brassica/metabolismo , Cromossomos de Plantas/genética , Dioxigenases/metabolismo , Flores/anatomia & histologia , Flores/genética , Flores/metabolismo , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Distribuição Tecidual
14.
Dev Growth Differ ; 56(4): 276-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24697670

RESUMO

The second heart field (SHF), foregut endoderm and sonic hedgehog (SHH) signaling pathway are all reported to associate with normal morphogenesis and septation of outflow tract (OFT). However, the morphological relationships of the development of foregut endoderm and expression of SHH signaling pathway members with the development of surrounding SHF and OFT are seldom described. In this study, serial sections of mouse embryos from ED9 to ED13 (midgestation) were stained with a series of marker antibodies for specifically highlighting SHF (Isl-1), endoderm (Foxa2), basement membrane (Laminin), myocardium (MHC) and smooth muscle (α-SMA) respectively, or SHH receptors antibodies including patched1 (Ptc1), patched2 (Ptc2) and smoothened, to observe the spatiotemporal relationship between them and their contributions to OFT morphogenesis. Our results demonstrated that the development of an Isl-1 positive field in the splanchnic mesoderm ventral to foregut, a subset of SHF, is closely coupled with pulmonary endoderm or tracheal groove, the Isl-1 positive cells surrounding pulmonary endoderm are distributed in a special cone-shaped pattern and take part in the formation of the lateral walls of the intrapericardial aorta and pulmonary trunk and the transient aortic-pulmonary septum, and Ptc1 and Ptc2 are exclusively expressed in pulmonary endoderm during this Isl-l positive field development, suggesting special roles played in inducing the Isl-l positive field formation by pulmonary endoderm. It is indicated that pulmonary endoderm plays a role in the development and specification of SHF in midgestation, and that pulmonary endoderm-associated Isl-l positive field is involved in patterning the morphogenesis and septation of the intrapericardial arterial trunks.


Assuntos
Endoderma/embriologia , Coração/embriologia , Pulmão/embriologia , Morfogênese , Animais , Endoderma/metabolismo , Coração/crescimento & desenvolvimento , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos
15.
Huan Jing Ke Xue ; 45(5): 3047-3058, 2024 May 08.
Artigo em Zh | MEDLINE | ID: mdl-38629565

RESUMO

In order to comprehensively evaluate the effects of vermicomposting on compost quality and the conversion of heavy metals under different control conditions, 109 studies were reviewed. The effects of earthworm species, pre-compost time, ventilation methods, initial C/N, initial pH, and initial moisture of the raw materials on compost quality and the heavy metal toxicity were quantitatively discussed during the vermicomposting process through Meta-analysis. The results showed that the six subgroups of factors all showed obvious influences on the compost quality and heavy metal toxicity. After vermicomposting, the contents of NO3--N (116.2%), TN (29.1%), TP (31.2%), and TK (15.0%) were significantly increased, whereas NH4+-N (-14.8%) and C/N (-36.3%) were significantly decreased. Meanwhile, the total amount of Cu and Cr of the final compost and their bioavailability were significantly reduced. Considering the influences of grouping factors on compost quality and heavy metals, it is recommended to adjust the initial moisture of pile materials to 70%-80%, C/N to 30-85, and pH to 6-7 and to conduct pre-composting for 0-15 d; additionally, vermicomposting should be naturally placed when the composting is aimed at promoting the compost quality. If the main purpose is to weaken the perniciousness of heavy metals in the raw material, it is recommended to adjust the initial moisture of the material to 50%-60%, C/N to less than 30, and pH to 7-8; to conduct no pre-compost; regularly turn the piles; and use the earthworm Eudrilus eugeniae for vermicomposting.


Assuntos
Compostagem , Metais Pesados , Oligoquetos , Animais , Solo/química , Esgotos/química , Metais Pesados/análise
16.
Adv Mater ; 36(6): e2308210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916840

RESUMO

As the need for sustainable battery chemistry grows, non-metallic ammonium ion (NH4 + ) batteries are receiving considerable attention because of their unique properties, such as low cost, nontoxicity, and environmental sustainability. In this study, the solvation interactions between NH4 + and solvents are elucidated and design principles for NH4 + weakly solvated electrolytes are proposed. Given that hydrogen bond interactions dominate the solvation of NH4 + and solvents, the strength of the solvent's electrostatic potential directly determines the strength of its solvating power. As a proof of concept, succinonitrile with relatively weak electronegativity is selected to construct a metal-free eutectic electrolyte (MEE). As expected, this MEE is able to significantly broaden the electrochemical stability window and reduce the solvent binding energy in the solvation shell, which leads to a lower desolvation energy barrier and a fast charge transfer process. As a result, the as-constructed NH4 -ion batteries exhibit superior reversible rate capability (energy density of 65 Wh kg-1 total active mass at 600 W kg-1 ) and unprecedent long-term cycling performance (retention of 90.2% after 1000 cycles at 1.0 A g-1 ). The proposed methodology for constructing weakly hydrogen bonded electrolytes will provide guidelines for implementing high-rate and ultra-stable NH4 + -based energy storage systems.

17.
Bioresour Technol ; 406: 131060, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950831

RESUMO

This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.


Assuntos
Compostagem , Caulim , Esgotos , Edulcorantes , Caulim/química , Esgotos/química , Compostagem/métodos , Águas Residuárias/química , Biodegradação Ambiental , Poluentes Químicos da Água , Purificação da Água/métodos , Nitrogênio , Nanopartículas/química , Sacarose/metabolismo , Sacarose/análogos & derivados
18.
Exploration (Beijing) ; 3(3): 20220051, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37933378

RESUMO

Among the promising batteries for electric vehicles, rechargeable Li-air (O2) batteries (LABs) have risen keen interest due to their high energy density. However, safety issues of conventional nonaqueous electrolytes remain the bottleneck of practical implementation of LABs. Solid-state electrolytes (SSEs) with non-flammable and eco-friendly properties are expected to alleviate their safety concerns, which have become a research focus in the research field of LABs. Herein, we present a systematic review on the progress of SSEs for rechargeable LABs, mainly focusing on the interfacial issues existing between the SSEs and electrodes. The discussion highlights the challenges and feasible strategies for designing suitable SSEs for LABs.

19.
Environ Pollut ; 336: 122386, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591323

RESUMO

New pollutants, pharmaceuticals and personal care products (PPCPs), accumulate in sewage sludge (SS) in wastewater treatment plants (WWTPs), posing risks to the environment and to human health. In the present study, the fates of typical PPCPs, carbamazepine (CBZ), triclosan (TCS), ibuprofen (IBU) and galaxolide (HHCB), were examined during WW treatment. Additionally, SS collected from a WWTP was used for aerobic composting to investigate the influences of micron-sized Fe3O4 (M-Fe) and nano-sized Fe3O4 (N-Fe) on the degradation of these PPCPs and the succession of microbial communities during the composting process. The results showed that the mean concentrations of CBZ, TCS, IBU and HHCB in the influent of the WWTP were 926.5, 174.4, 8869, and 967.3 ng/g, respectively, and in the effluent were 107.6, 47.0, 283.4, and 88.4 ng/g, respectively. The removal rate averaged ∼80%, while the enrichment rates of the PPCPs in SS ranged from 37.2% to 60.5%. M-Fe and N-Fe reduced NH3 emissions by 32.9% and 54.1% and N2O emissions by 26.2% and 50.8%, respectively. Moreover, the addition of M-Fe and N-Fe effectively increased PPCP degradation rates 1.12-1.66-fold. During the whole process, the additions of M-Fe and N-Fe significantly shifted microbial community structure, and the abundances of Proteobacteria, Chloroflexi, and Actinobacteria were increased during the thermophilic stage, marking them as key PPCP-degrading phyla. Taken together, our results indicated that the addition of M-Fe and N-Fe is an effective method for improving the quality of end compost and accelerating the degradation of PPCPs.

20.
Adv Mater ; : e2304878, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401112

RESUMO

Metal hexacyanoferrates are recognized as superior cathode materials for zinc and zinc hybrid batteries, particularly the Prussian blue analog (PBA). However, PBA development is hindered by several limitations, including small capacities (<70 mAh g-1 ) and short lifespans (<1000 cycles). These limitations generally arise due to incomplete activation of redox sites and structure collapse during intercalation/deintercalation of metal ions in PBAs. According to this study, the adoption of a hydroxyl-rich (OH-rich) hydrogel electrolyte with extended electrochemical stability windows (ESWs) can effectively activate the redox site of low-spin Fe of the Kx Fey Mn1-y [Fe(CN)6 ]w ·zH2 O (KFeMnHCF) cathode while tuning its structure. Additionally, the strong adhesion of the hydrogel electrolyte inhibits KFeMnHCF particles from falling off the cathode and dissolving. The easy desolvation of metal ions in the developed OH-rich hydrogel electrolytes can lead to a fast and reversible intercalation/deintercalation of metal ions in the PBA cathode. As a result, the Zn||KFeMnHCF hybrid batteries achieve the unprecedented characteristics of 14 500 cycles, a 1.7 V discharge plateau, and a 100 mAh g-1 discharge capacity. The results of this study provide a new understanding of the development of zinc hybrid batteries with PBA cathode materials and present a promising new electrolyte material for this application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA