Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 316: 115217, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561494

RESUMO

The wide use of nano metal oxide particles (NMOPs) brings about their inevitable release into the water environment, affecting the environment and human health. Therefore, the stability, aggregation, and sedimentation process of four typical NMOPs (ZnO NPs, CeO2 NPs, TiO2 NPs, and CuO NPs) were investigated in artificial water and real municipal sewage to reveal their complicated behavior. Results showed that NMOPs aggregated at the pH of zero-charge point, and their hydrodynamic diameters and aggregation rates could reach the maximum values. The hydrodynamic diameters and aggregation rates of ZnO NPs, CeO2 NPs, TiO2 NPs, and CuO NPs at the zero-charge point were 617, 1760, 870, 1502 nm, and 31.7, 1158.1, 48.3, 115.7 nm/min, respectively. In addition, the dissolution of NMOPs led to the sedimentation rates under acidic conditions being much lower than those under neutral and alkaline conditions. The aggregation and sedimentation performance of NMOPs were affected by not only pH but also ionic strength (IS) and species. The aggregation rates of NMOPs increased with the increase of IS (0-10 mM), and the maximum aggregation rate of CeO2 NPs was 470.1 nm/min (pH = 7 and CaCl2 = 10 mM). According to Coulomb's law, divalent cations (Mg2+, Ca2+) were more competitively adsorbed on the surface of NMOPs than monovalent cations (K+, Na+), which increased the zeta potential and aggregation rate of NMOPs. Furthermore, the NMOPs were easier to aggregate in municipal sewage because of the homogeneous aggregation between nanoparticles and heterogeneous aggregation with natural colloids. The total interaction energy between NMOPs was calculated by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, which was consistent with the experimental results.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Óxidos , Esgotos , Água
2.
Imeta ; 3(2): e168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882485

RESUMO

Deoxyribonucleic acid (DNA) has been suggested as a very promising medium for data storage in recent years. Although numerous studies have advocated for DNA data storage, its practical application remains obscure and there is a lack of a user-oriented platform. Here, we developed a DNA data storage platform, named Storage-D, which allows users to convert their data into DNA sequences of any length and vice versa by selecting algorithms, error-correction, random-access, and codec pin strategies in terms of their own choice. It incorporates a newly designed "Wukong" algorithm, which provides over 20 trillion codec pins for data privacy use. This algorithm can also control GC content to the selected standard, as well as adjust the homopolymer run length to a defined level, while maintaining a high coding potential of ~1.98 bis/nt, allowing it to outperform previous algorithms. By connecting to a commercial DNA synthesis and sequencing platform with "Storage-D," we successfully stored "Diagnosis and treatment protocol for COVID-19 patients" into 200 nt oligo pools in vitro, and 500 bp genes in vivo which replicated in both normal and extreme bacteria. Together, this platform allows for practical and personalized DNA data storage, potentially with a wide range of applications.

3.
Int J Biol Macromol ; 265(Pt 2): 130994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518950

RESUMO

Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.


Assuntos
Incrustação Biológica , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA