Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
2.
Circulation ; 147(8): 669-685, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36591786

RESUMO

BACKGROUND: Epsin endocytic adaptor proteins are implicated in the progression of atherosclerosis; however, the underlying molecular mechanisms have not yet been fully defined. In this study, we determined how epsins enhance endothelial-to-mesenchymal transition (EndoMT) in atherosclerosis and assessed the efficacy of a therapeutic peptide in a preclinical model of this disease. METHODS: Using single-cell RNA sequencing combined with molecular, cellular, and biochemical analyses, we investigated the role of epsins in stimulating EndoMT using knockout in Apoe-/- and lineage tracing/proprotein convertase subtilisin/kexin type 9 serine protease mutant viral-induced atherosclerotic mouse models. The therapeutic efficacy of a synthetic peptide targeting atherosclerotic plaques was then assessed in Apoe-/- mice. RESULTS: Single-cell RNA sequencing and lineage tracing revealed that epsins 1 and 2 promote EndoMT and that the loss of endothelial epsins inhibits EndoMT marker expression and transforming growth factor-ß signaling in vitro and in atherosclerotic mice, which is associated with smaller lesions in the Apoe-/- mouse model. Mechanistically, the loss of endothelial cell epsins results in increased fibroblast growth factor receptor-1 expression, which inhibits transforming growth factor-ß signaling and EndoMT. Epsins directly bind ubiquitinated fibroblast growth factor receptor-1 through their ubiquitin-interacting motif, which results in endocytosis and degradation of this receptor complex. Consequently, administration of a synthetic ubiquitin-interacting motif-containing peptide atheroma ubiquitin-interacting motif peptide inhibitor significantly attenuates EndoMT and progression of atherosclerosis. CONCLUSIONS: We conclude that epsins potentiate EndoMT during atherogenesis by increasing transforming growth factor-ß signaling through fibroblast growth factor receptor-1 internalization and degradation. Inhibition of EndoMT by reducing epsin-fibroblast growth factor receptor-1 interaction with a therapeutic peptide may represent a novel treatment strategy for atherosclerosis.


Assuntos
Aterosclerose , Fator de Crescimento Transformador beta , Camundongos , Animais , Fatores de Crescimento de Fibroblastos , Apolipoproteínas E , Aterosclerose/genética , Receptores de Fatores de Crescimento de Fibroblastos , Fatores de Crescimento Transformadores , Ubiquitinas
3.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178134

RESUMO

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Assuntos
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(1): e1-e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453280

RESUMO

Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.


Assuntos
Vasos Linfáticos , Doenças Metabólicas , Infarto do Miocárdio , Humanos , Linfangiogênese , Vasos Linfáticos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Doenças Metabólicas/metabolismo
5.
BMC Gastroenterol ; 23(1): 226, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393226

RESUMO

Esophageal stricture is a common complication after endoscopic submucosal dissection (ESD) for superficial esophageal cancer and precancerous lesions, we intend to investigate the independent risk factors of esophageal stricture after ESD by adding the data of included living habits, established a nomogram model to predict the risk of esophageal stricture, and verified it by external data. The clinical data and living habits of patients with early esophageal cancer and precancerous lesions who underwent ESD in the Affiliated Hospital of North Sichuan Medical College and Langzhong People's Hospital from March 2017 to August 2021 were retrospectively collected. The data collected from the two hospitals were used as the development group (n = 256) and the validation group (n = 105), respectively. Univariate and multivariate logistic regression analyses were used to determine independent risk factors for esophageal stricture after ESD and establish a nomogram model for the development group. The prediction performance of the nomogram model is internally and externally verified by calculating C-Index and plotting the receiver operating characteristic curve (ROC) and calibration curve, respectively. The results showed that Age, drinking water temperature, neutrophil-lymphocyte ratio, the extent of esophageal mucosal defect, longitudinal diameter of resected mucosa, and depth of tissue invasion (P < 0.05) were independent risk factors for esophageal stricture after ESD. The C-Index of the development group and validation group was 0.925 and 0.861, respectively. The ROC curve and area under the curve (AUC) of the two groups suggested that the discrimination and prediction performance of the model were good. The two groups of calibration curves are consistent and almost overlap with the ideal calibration curve, indicating that the predicted results of this model are in good agreement with the actual observed results. In conclusion, this nomogram model has a high accuracy for predicting the risk of esophageal stricture after ESD, providing a theoretical basis for reducing or avoiding esophageal stricture and guiding clinical practice.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Estenose Esofágica , Lesões Pré-Cancerosas , Humanos , Ressecção Endoscópica de Mucosa/efeitos adversos , Estudos de Casos e Controles , Estenose Esofágica/etiologia , Nomogramas , Estudos Retrospectivos , Neoplasias Esofágicas/cirurgia , Fatores de Risco
6.
J Biol Chem ; 294(39): 14370-14382, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395659

RESUMO

A critical step in the development of chronic inflammatory diseases is the accumulation of proinflammatory macrophages in the extracellular matrix (ECM) of peripheral tissues. The adhesion receptor integrin αDß2 promotes the development of atherosclerosis and diabetes by supporting macrophage retention in inflamed tissue. We recently found that the end product of docosahexaenoic acid (DHA) oxidation, 2-(ω-carboxyethyl)pyrrole (CEP), serves as a ligand for αDß2 CEP adduct with ECM is generated during inflammation-mediated lipid peroxidation. The goal of this project was to identify a specific inhibitor for αDß2-CEP interaction that can prevent macrophage accumulation. Using a specially designed peptide library, Biacore-detected protein-protein interaction, and adhesion of integrin-transfected HEK 293 cells, we identified a sequence (called P5 peptide) that significantly and specifically inhibited αD-CEP binding. In the model of thioglycollate-induced peritoneal inflammation, the injection of cyclic P5 peptide reduced 3-fold the macrophage accumulation in WT mice but had no effect in αD-deficient mice. The tracking of adoptively transferred, fluorescently labeled WT and αD-/- monocytes in the model of peritoneal inflammation and in vitro two-dimensional and three-dimensional migration assays demonstrated that P5 peptide does not affect monocyte transendothelial migration or macrophage efflux from the peritoneal cavity but regulates macrophage migration through the ECM. Moreover, the injection of P5 peptide into WT mice on a high-fat diet prevents macrophage accumulation in adipose tissue in an αDß2-dependent manner. Taken together, these results demonstrate the importance of αDß2-mediated macrophage adhesion for the accumulation of infiltrating macrophages in the inflamed ECM and propose P5 peptide as a potential inhibitor of atherogenesis and diabetes.


Assuntos
Anti-Inflamatórios/farmacologia , Movimento Celular , Macrófagos Peritoneais/metabolismo , Peptídeos Cíclicos/farmacologia , Peritonite/tratamento farmacológico , Pirróis/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Células HEK293 , Humanos , Cadeias alfa de Integrinas/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Cíclicos/uso terapêutico , Peritonite/etiologia , Ligação Proteica , Tioglicolatos/toxicidade
7.
Blood ; 132(1): 78-88, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29724896

RESUMO

Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMß2 and αDß2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by ß2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMß2- and αDß2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMß2- and αDß2-mediated migration/retention of macrophages during inflammation.


Assuntos
Antígenos CD11/metabolismo , Antígenos CD18/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Animais , Antígenos CD11/genética , Antígenos CD18/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cadeias alfa de Integrinas/genética , Antígeno de Macrófago 1/genética , Macrófagos/patologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Oxirredução
8.
J Immunol ; 198(12): 4855-4867, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500072

RESUMO

Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDß2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.


Assuntos
Aterosclerose/imunologia , Vasos Sanguíneos/patologia , Antígenos CD11/genética , Antígenos CD18/genética , Cadeias alfa de Integrinas/genética , Macrófagos/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/patologia , Vasos Sanguíneos/imunologia , Antígenos CD11/imunologia , Antígenos CD18/imunologia , Dieta Ocidental , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Cadeias alfa de Integrinas/deficiência , Cadeias alfa de Integrinas/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Peritonite/imunologia , Peritonite/patologia , Ativação Transcricional , Regulação para Cima
9.
J Neurochem ; 128(3): 445-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24111919

RESUMO

Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. In this study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine ß-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase in DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, this study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of depression.


Assuntos
Corticosterona/farmacologia , Dopamina beta-Hidroxilase/biossíntese , Locus Cerúleo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/biossíntese , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Imunofluorescência , Hibridização In Situ , Locus Cerúleo/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Paladar/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
BMC Complement Altern Med ; 14: 461, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25465226

RESUMO

BACKGROUND: Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. METHODS: To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 µg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-ß/Smad signaling pathway and oxidative stress were examined. RESULTS: The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1ß and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-ß/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. CONCLUSIONS: The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Venenos Elapídicos/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bleomicina , Venenos Elapídicos/farmacologia , Elapidae , Feminino , Fibrose , Hidroxiprolina/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Sci Total Environ ; 946: 174204, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914342

RESUMO

Film mulching has been extensively used to improve agricultural production in arid regions of China. However, without sufficient mulch film recovery, large amounts of residual film accumulated in the farmland, which would affect crop yield and water use efficiency (WUE). In order to comprehensively analyze the effects of residual film on crop yield and WUE, and clarify its influencing mechanism, present study adopted a meta-analysis to systematically evaluate the impacts of residual film on soil physicochemical properties, crop root growth, yield, and WUE. The results showed that residual film significantly increased soil bulk density and the soil moisture content in 0-20 cm soil layer, but decreased soil porosity, soil organic matter, soil total nitrogen content, and soil moisture content in >20 cm soil layer, especially when residual film amount was >400 kg ha-1. Residual film significantly reduced crop root dry weight, root length, root diameter, root volume and root surface area. Generally, crop yield and WUE decreased with the increase of residual film amount; and crop yield was reduced by about 14.00 % when the residual film amount increased by 1000 kg ha-1. In average, crop yield and WUE under film residual condition were significantly decreased by 13.46 % and 9.21 %, respectively. The negative effects of residual film on root growth, yield and WUE were greater for cash crops (cotton, tomato and potato) than for cereal crops (wheat, maize). The structural equation model indicated that residual film generated indirect negative effects on crop yield and WUE by directly affecting soil physicochemical properties and crop root growth, with the standard path coefficients of -0.302 and - 0.217, respectively. The results would provide a theoretical basis for reducing residual film pollution on farmland and promoting the green and sustainable development of agriculture.

12.
Vascul Pharmacol ; 155: 107368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548093

RESUMO

Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais , Transdução de Sinais , Humanos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Aterosclerose/genética , Animais , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Placa Aterosclerótica , Fenótipo
13.
Medicine (Baltimore) ; 101(42): e31222, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36281096

RESUMO

BACKGROUND: Ankle sprain is considered a major problem that may hinder youth athletes' athletic development because it will lead to ongoing dysfunction, reoccurrence of ankle sprain, chronic ankle instability, and posttraumatic osteoarthritis. Kinesio taping (KT) is a therapeutic taping technique that has been widely used in the treatment of various ankle issues including sprained ankles and in the prevention of ankle sprains. It can not only provide the injured ankle with support during the rehabilitation phase, but also enhance the ankle stability during activity. However, the available evidence regarding its effectiveness in the treatment and prevention of ankle sprain is inconsistent. Therefore, a systematic review will help clinicians and coaches better understand the application of KT in clinical and training practices. This study is to systematically review the literature on the use of KT to improve outcomes including ankle function, proprioception, and pain and to evaluate the effectiveness of KT in the treatment and prevention of ankle sprain injuries. METHODS: A comprehensive electronic search of the literature will be undertaken in the following databases: PubMed, CINAHL, SPORTDiscus, Cochrane library, Web of Science and Scopus from 1979 to August 2022. The Physiotherapy Evidence Database scale will be used to assess the methodological quality of all included studies and RevMan 5.3 (Copenhagen, The Nordic Cochrane Centre) for the data analysis. RESULTS: This study will provide a standardized evaluation and comparison for effects of KT on the treatment and prevention of ankle sprains in youth athletes. CONCLUSION: This review will provide the evidence of the effectiveness of KT used in the treatment and prevention of ankle sprain in youth athletes. This review will also provide directions and recommendations for future research and clinical practices targeting treatment and prevention of ankle sprains in youth athletes.


Assuntos
Traumatismos do Tornozelo , Fita Atlética , Adolescente , Humanos , Traumatismos do Tornozelo/prevenção & controle , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Atletas , Literatura de Revisão como Assunto
14.
Front Cardiovasc Med ; 9: 1031293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247464

RESUMO

The efficient phagocytic clearance of dying cells and apoptotic cells is one of the processes that is essential for the maintenance of physiologic tissue function and homeostasis, which is termed "efferocytosis." Under normal conditions, "find me" and "eat me" signals are released by apoptotic cells to stimulate the engulfment and efferocytosis of apoptotic cells. In contrast, abnormal efferocytosis is related to chronic and non-resolving inflammatory diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion development, monocyte-derived macrophages display efficient efferocytosis that restricts plaque progression; however, this capacity is reduced in more advanced lesions. Macrophage reprogramming as a result of the accumulation of apoptotic cells and augmented inflammation accounts for this diminishment of efferocytosis. Furthermore, defective efferocytosis plays an important role in necrotic core formation, which triggers plaque rupture and acute thrombotic cardiovascular events. Recent publications have focused on the essential role of macrophage efferocytosis in cardiac pathophysiology and have pointed toward new therapeutic strategies to modulate macrophage efferocytosis for cardiac tissue repair. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis in vascular cells, including macrophages and other phagocytic cells and detail how efferocytosis-related molecules contribute to the maintenance of vascular hemostasis and how defective efferocytosis leads to the formation and progression of atherosclerotic plaques.

15.
Cells ; 11(11)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35681530

RESUMO

Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.


Assuntos
Doenças Cardiovasculares , Hipertensão Pulmonar , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Hipertensão Pulmonar/metabolismo
16.
Front Cardiovasc Med ; 9: 841928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252405

RESUMO

Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.

17.
Front Cardiovasc Med ; 8: 742382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557535

RESUMO

There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.

18.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440686

RESUMO

Background: The endothelial epsin 1 and 2 endocytic adaptor proteins play an important role in atherosclerosis by regulating the degradation of the calcium release channel inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). In this study, we sought to identify additional targets responsible for epsin-mediated atherosclerotic endothelial cell activation and inflammation in vitro and in vivo. Methods: Atherosclerotic ApoE-/- mice and ApoE-/- mice with an endothelial cell-specific deletion of epsin 1 on a global epsin 2 knock-out background (EC-iDKO/ApoE-/-), and aortic endothelial cells isolated from these mice, were used to examine inflammatory signaling in the endothelium. Results: Inflammatory signaling was significantly abrogated by both acute (tumor necrosis factor-α (TNFα) or lipopolysaccharide (LPS)) and chronic (oxidized low-density lipoprotein (oxLDL)) stimuli in EC-iDKO/ApoE-/- mice and murine aortic endothelial cells (MAECs) isolated from epsin-deficient animals when compared to ApoE-/- controls. Mechanistically, the epsin ubiquitin interacting motif (UIM) bound to Toll-like receptors (TLR) 2 and 4 to potentiate inflammatory signaling and deletion of the epsin UIM mitigated this interaction. Conclusions: The epsin endocytic adaptor proteins potentiate endothelial cell activation in acute and chronic models of atherogenesis. These studies further implicate epsins as therapeutic targets for the treatment of inflammation of the endothelium associated with atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação , Transdução de Sinais , Animais , Aorta/metabolismo , Aterosclerose/etiologia , Células Endoteliais/patologia , Feminino , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout
19.
J Colloid Interface Sci ; 594: 522-530, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774408

RESUMO

Aqueous rechargeable batteries (ARBs) have the advantages of low cost, high safety and sustainable environmental friendliness. However, the key challenge for ARBs is the narrow electrochemical stability window of the water, undoubtedly leading to the low output voltage, the underachieved capacity and a low energy density. Prussian blues and their analogues have attracted great research interest for energy storage due to the advantages of facile synthesis, versatile categories and tunable three dimensional frameworks. Herein a flexible integrated potassium cobalt hexacyano ferrates (Co-HCF) on carbon fiber clothes (CFCs) were designed through a feasible route combining the controllable electrochemical deposition and the efficient co-precipitation process. The Co-HCF@CFCs demonstrate an excellent sodium ion storage with a high reversible capacity of 91 mAh g-1 at 1 A g-1 and 55 mAh g-1 at 10 A g-1 in aqueous electrolytes. The long cycling stability at the high current demonstrate the excellent structure stability of the Co-HCF@CFCs. Analysis on the rate Cyclic voltammograms (CV) profiles reveal the fast electrochemical kinetics with the capacitive controlled process, while galvanostatic intermittent titration technique (GITT) tests fast diffusion coefficient related with the sodium ions intercalation/deintercalation in the Co-HCF@CFCs. In addition, the flexible Co-CHF@CFCs also demonstrate excellent performance for quasi-solid-state ARBs even at the high bending angles. The high quality Co-HCF@CFCs with advantage of high rate capability and excellent reversible capacity make them a promising candidate for high performance ARBs.

20.
J Leukoc Biol ; 109(5): 877-890, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33438263

RESUMO

Neutrophil-macrophage interplay is a fine-tuning mechanism that regulates the innate immune response during infection and inflammation. Cell surface receptors play an essential role in neutrophil and macrophage functions. The same receptor can provide different outcomes within diverse leukocyte subsets in different inflammatory conditions. Understanding the variety of responses mediated by one receptor is critical for the development of anti-inflammatory treatments. In this study, we evaluated the role of a leukocyte adhesive receptor, integrin αD ß2 , in the development of acute inflammation. αD ß2 is mostly expressed on macrophages and contributes to the development of chronic inflammation. In contrast, we found that αD -knockout dramatically increases mortality in the cecal ligation and puncture sepsis model and LPS-induced endotoxemia. This pathologic outcome of αD -deficient mice is associated with a reduced number of monocyte-derived macrophages and an increased number of neutrophils in their lungs. However, the tracking of adoptively transferred fluorescently labeled wild-type (WT) and αD-/- monocytes in WT mice during endotoxemia demonstrated only a moderate difference between the recruitment of these two subsets. Moreover, the rescue experiment, using i.v. injection of WT monocytes to αD -deficient mice followed by LPS challenge, showed only slightly reduced mortality. Surprisingly, the injection of WT neutrophils to the bloodstream of αD-/- mice markedly increased migration of monocyte-derived macrophage to lungs and dramatically improves survival. αD -deficient neutrophils demonstrate increased necrosis/pyroptosis. αD ß2 -mediated macrophage accumulation in the lungs promotes efferocytosis that reduced mortality. Hence, integrin αD ß2 implements a complex defense mechanism during endotoxemia, which is mediated by macrophages via a neutrophil-dependent pathway.


Assuntos
Endotoxemia/imunologia , Cadeias alfa de Integrinas/metabolismo , Neutrófilos/metabolismo , Sepse/imunologia , Transferência Adotiva , Animais , Ceco/patologia , Contagem de Células , Movimento Celular , Citocinas/sangue , Modelos Animais de Doenças , Endotoxemia/sangue , Endotoxemia/complicações , Cadeias alfa de Integrinas/deficiência , Ligadura , Lipopolissacarídeos , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/patologia , Necrose , Neutrófilos/patologia , Fagocitose , Punções , Piroptose , Sepse/sangue , Sepse/complicações , Análise de Sobrevida , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA