Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 269: 125466, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008021

RESUMO

Human health is greatly threatened by bacterial infection, which raises the risk of serious illness and death in humans. For early screening and accurate treatment of bacterial infection, there is a strong desire to undertake ultrasensitive detection and effective killing of pathogenic bacteria. Herein, a novel surface-enhanced Raman scattering (SERS) biosensor based on sandwich structure consisting of capture probes/bacteria/SERS tags was established for specific identification, capture and photothermal killing of Escherichia coli (E. coli). Finite-difference time-domain (FDTD) technique was used to simulate the electromagnetic field distribution of capture probes, SERS tags and sandwich-type SERS substrate, and a possible SERS enhancement mechanism based on sandwich structure was presented and discussed. Sandwich-type SERS biosensor successfully achieved distinctive identification and magnetic beneficiation of E. coli. In addition, a single SERS substrate, including capture probes and SERS tags, could also achieve outstanding photothermal effects as a consequence of localized surface plasmon resonance (LSPR) effect. Intriguingly, sandwich-type SERS biosensor demonstrated a higher photothermal conversion efficiency (50.03 %) than the single substrate, which might be attributed to the formation of target bacterial clusters. The superior biocompatibility and the low toxicity of the sandwich-type biosensor were confirmed. Our approach offers a fresh method for constructing sandwich-type biosensor with multiple SERS hotspots based on extremely effective hybrid plasmonic nanoparticles, and has a wide range of potential applications in the recognition and treatment of bacteria.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Escherichia coli , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Bactérias , Análise Espectral Raman/métodos , Ouro/química
2.
J Colloid Interface Sci ; 628(Pt B): 315-326, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998457

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic, teratogenic and mutagenic properties are persistent organic pollutants in the environment. Herein, the novel multifunctional Fe3O4/Cu2O-Ag nanocomposites (NCs) have been established for ultra-sensitive surface-enhanced Raman scattering (SERS) detection and visible light-driven photocatalytic degradation of PAHs. Fe3O4/Cu2O-Ag NCs with different amounts of Ag nanocrystals were synthesized, and the effect of Ag contents on SERS performance was studied by finite-difference time-domain (FDTD) algorithm. The synergistic interplay of electromagnetic and chemical enhancement was responsible for excellent SERS sensitivity of Fe3O4/Cu2O-Ag NCs. The limit of detection (LOD) of optimal SERS substrates (FCA-2 NCs) for Nap, BaP, Pyr and Ant was as low as 10-9, 10-9, 10-9 and 10-10 M, respectively. The SERS detection of PAHs in actual soil environment was also studied. Moreover, a simple SERS method was used to monitor the photocatalytic process of PAHs. The recovery and reuse of Fe3O4/Cu2O-Ag NCs were achieved through magnetic field, and the outstanding SERS and photocatalytic performance were still maintained even after eight cycles. This magnetic multifunctional NCs provide a unique idea for the integration of ultra-sensitive SERS detection and efficient photocatalytic degradation of PAHs, and thus will have more hopeful prospects in the field of environmental protection.


Assuntos
Nanocompostos , Hidrocarbonetos Policíclicos Aromáticos , Luz , Nanocompostos/química , Poluentes Orgânicos Persistentes , Solo , Prata/química
3.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500854

RESUMO

The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. The size and localized surface plasmon resonance (LSPR) characteristics of Au NSs were adjusted by varying Au seed additions. In addition, photothermal conversion performance of Au NSs with various Au seed additions was evaluated. Photothermal conversion efficiency of Au NSs with optimal Au seed additions (50 µL) was as high as 28.75% under 808 nm laser irradiation, and the heat generated was sufficient to kill Staphylococcus aureus (S. aureus). Importantly, Au NSs also exhibited excellent SERS activity for the 4-mercaptobenzoic acid (4-MBA) probe molecule, and the local electromagnetic field distribution of Au NSs was explored through finite-difference time-domain (FDTD) simulation. As verified by experiments, Au NSs' SERS substrate could achieve a highly sensitive detection of a low concentration of potentially toxic pollutants such as methylene blue (MB) and bilirubin (BR). This work demonstrates a promising multifunctional nanoplatform with great potential for efficient photothermal inactivation and ultra-sensitive SERS detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA