Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nat Immunol ; 22(8): 996-1007, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34282329

RESUMO

During chronic viral infection, CD8+ T cells develop into three major phenotypically and functionally distinct subsets: Ly108+TCF-1+ progenitors, Ly108-CX3CR1- terminally exhausted cells and the recently identified CX3CR1+ cytotoxic effector cells. Nevertheless, how CX3CR1+ effector cell differentiation is transcriptionally and epigenetically regulated remains elusive. Here, we identify distinct gene regulatory networks and epigenetic landscapes underpinning the formation of these subsets. Notably, our data demonstrate that CX3CR1+ effector cells bear a striking similarity to short-lived effector cells during acute infection. Genetic deletion of Tbx21 significantly diminished formation of the CX3CR1+ subset. Importantly, we further identify a previously unappreciated role for the transcription factor BATF in maintaining a permissive chromatin structure that allows the transition from TCF-1+ progenitors to CX3CR1+ effector cells. BATF directly bound to regulatory regions near Tbx21 and Klf2, modulating their enhancer accessibility to facilitate the transition. These mechanistic insights can potentially be harnessed to overcome T cell exhaustion during chronic infection and cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Proteínas com Domínio T/genética , Subpopulações de Linfócitos T/citologia , Animais , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia
2.
Nat Immunol ; 25(2): 191-193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238607
3.
Immunity ; 55(3): 475-493.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35216666

RESUMO

CD4+ T cell-derived interleukin 21 (IL-21) sustains CD8+ T cell responses during chronic viral infection, but the helper subset that confers this protection remains unclear. Here, we applied scRNA and ATAC-seq approaches to determine the heterogeneity of IL-21+CD4+ T cells during LCMV clone 13 infection. CD4+ T cells were comprised of three transcriptionally and epigenetically distinct populations: Cxcr6+ Th1 cells, Cxcr5+ Tfh cells, and a previously unrecognized Slamf6+ memory-like (Tml) subset. T cell differentiation was specifically redirected toward the Tml subset during chronic, but not acute, LCMV infection. Although this subset displayed an enhanced capacity to accumulate and some developmental plasticity, it remained largely quiescent, which may hinder its helper potential. Conversely, mixed bone marrow chimera experiments revealed that Tfh cell-derived IL-21 was critical to sustain CD8+ T cell responses and viral control. Thus, strategies that bolster IL-21+Tfh cell responses may prove effective in enhancing CD8+ T cell-mediated immunity.


Assuntos
Células T Auxiliares Foliculares , Viroses , Linfócitos T CD8-Positivos , Humanos , Interleucinas
4.
Immunity ; 55(12): 2369-2385.e10, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36370712

RESUMO

Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Fator Regulador 2 de Interferon/genética , Linfócitos T CD8-Positivos , Fatores de Transcrição , Exaustão das Células T , Neoplasias/patologia
5.
Immunity ; 54(6): 1200-1218.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33951416

RESUMO

Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/ß-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of ß-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, ß-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted ß-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This ß-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by ß-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Autorrenovação Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Biomarcadores , COVID-19/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Transdução de Sinais
6.
Immunity ; 51(6): 1028-1042.e4, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31810883

RESUMO

Although CD4+ T cell "help" is crucial to sustain antiviral immunity, the mechanisms by which CD4+ T cells regulate CD8+ T cell differentiation during chronic infection remain elusive. Here, using single-cell RNA sequencing, we show that CD8+ T cells responding to chronic infection were more heterogeneous than previously appreciated. Importantly, our findings uncovered the formation of a CX3CR1-expressing CD8+ T cell subset that exhibited potent cytolytic function and was required for viral control. Notably, our data further demonstrate that formation of this cytotoxic subset was critically dependent on CD4+ T cell help via interleukin-21 (IL-21) and that exploitation of this developmental pathway could be used therapeutically to enhance the killer function of CD8+ T cells infiltrated into the tumor. These findings uncover additional molecular mechanisms of how "CD4+ T cell help" regulates CD8+ T cell differentiation during persistent infection and have implications toward optimizing the generation of protective CD8+ T cells in immunotherapy.


Assuntos
Infecções , Neoplasias , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Humanos , Receptor de Morte Celular Programada 1 , Subpopulações de Linfócitos T
7.
Nat Immunol ; 16(8): 871-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147684

RESUMO

Memory CD8(+) T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4(+) regulatory T cells (Treg cells) was necessary for the maturation of memory CD8(+) T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell-derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase 'restored' the maturation of memory CD8(+) T cells in IL-10-deficient mice. Our data indicate that Treg cell-derived IL-10 is needed to insulate CD8(+) T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-10/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante
8.
Trends Immunol ; 44(4): 276-286, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907685

RESUMO

Reinvigorating the function of exhausted CD8+ T cells during chronic viral infection and cancer is a major goal of current immunotherapy regimens. Here, we discuss recent advances in our understanding of exhausted CD8+ T cell heterogeneity as well as the potential differentiation trajectories that exhausted T cells follow during chronic infection and/or cancer. We highlight surmounting evidence suggesting that some T cell clones are divergent in nature and can develop into either terminally differentiated effector or exhausted CD8+ T cells. Lastly, we consider the potential therapeutic implications of such a bifurcation model of CD8+ T cell differentiation, including the intriguing hypothesis that redirecting progenitor CD8+ T cell differentiation along an effector pathway may serve as a novel approach to mitigate T cell exhaustion.


Assuntos
Coriomeningite Linfocítica , Neoplasias , Humanos , Linfócitos T CD8-Positivos/metabolismo , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Diferenciação Celular
9.
J Immunol ; 212(11): 1829-1842, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619295

RESUMO

In response to acute infection, naive CD4+ T cells primarily differentiate into T helper 1 (Th1) or T follicular helper (Tfh) cells that play critical roles in orchestrating cellular or humoral arms of immunity, respectively. However, despite the well established role of T-bet and BCL-6 in driving Th1 and Tfh cell lineage commitment, respectively, whether additional transcriptional circuits also underlie the fate bifurcation of Th1 and Tfh cell subsets is not fully understood. In this article, we study how the transcriptional regulator Bhlhe40 dictates the Th1/Tfh differentiation axis in mice. CD4+ T cell-specific deletion of Bhlhe40 abrogates Th1 but augments Tfh differentiation. We also assessed an increase in germinal center B cells and Ab production, suggesting that deletion of Bhlhe40 in CD4+ T cells not only alters Tfh differentiation but also their capacity to provide help to B cells. To identify molecular mechanisms by which Bhlhe40 regulates Th1 versus Tfh lineage choice, we first performed epigenetic profiling in the virus specific Th1 and Tfh cells following LCMV infection, which revealed distinct promoter and enhancer activities between the two helper cell lineages. Furthermore, we identified that Bhlhe40 directly binds to cis-regulatory elements of Th1-related genes such as Tbx21 and Cxcr6 to activate their expression while simultaneously binding to regions of Tfh-related genes such as Bcl6 and Cxcr5 to repress their expression. Collectively, our data suggest that Bhlhe40 functions as a transcription activator to promote Th1 cell differentiation and a transcription repressor to suppress Tfh cell differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Células T Auxiliares Foliculares , Células Th1 , Animais , Camundongos , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células T Auxiliares Foliculares/imunologia , Células Th1/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Linfócitos B/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Centro Germinativo/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Proteínas de Homeodomínio
10.
J Immunol ; 210(9): 1281-1291, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920384

RESUMO

Diacylglycerol is a potent element of intracellular secondary signaling cascades whose production is enhanced by cell-surface receptor agonism and function is regulated by enzymatic degradation by diacylglycerol kinases (DGKs). In T cells, stringent regulation of the activity of this second messenger maintains an appropriate balance between effector function and anergy. In this article, we demonstrate that DGKα is an indispensable regulator of TCR-mediated activation of CD8 T cells in lymphocytic choriomeningitis virus Clone 13 viral infection. In the absence of DGKα, Clone 13 infection in a murine model results in a pathologic, proinflammatory state and a multicellular immunopathologic host death that is predominantly driven by CD8 effector T cells.


Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Camundongos , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Coriomeningite Linfocítica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Clonais , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33859041

RESUMO

During an acute viral infection, CD8 T cells encounter a myriad of antigenic and inflammatory signals of variable strength, which sets off individual T cells on their own differentiation trajectories. However, the developmental path for each of these cells will ultimately lead to one of only two potential outcomes after clearance of the infection-death or survival and development into memory CD8 T cells. How this cell fate decision is made remains incompletely understood. In this study, we explore the transcriptional changes during effector and memory CD8 T cell differentiation at the single-cell level. Using single-cell, transcriptome-derived gene regulatory network analysis, we identified two main groups of regulons that govern this differentiation process. These regulons function in concert with changes in the enhancer landscape to confer the establishment of the regulatory modules underlying the cell fate decision of CD8 T cells. Furthermore, we found that memory precursor effector cells maintain chromatin accessibility at enhancers for key memory-related genes and that these enhancers are highly enriched for E2A binding sites. Finally, we show that E2A directly regulates accessibility of enhancers of many memory-related genes and that its overexpression increases the frequency of memory precursor effector cells and accelerates memory cell formation while decreasing the frequency of short-lived effector cells. Overall, our results suggest that effector and memory CD8 T cell differentiation is largely regulated by two transcriptional circuits, with E2A serving as an important epigenetic regulator of the memory circuit.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Cromatina/metabolismo , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Hematopoese , Humanos , Memória Imunológica/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência de RNA , Análise de Célula Única
12.
Reprod Domest Anim ; 59(7): e14689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044628

RESUMO

Sheep are important herbivorous domestic animal globally, and the Chinese indigenous sheep breed has a multitude of economically significant variations due to the diverse geographical and ecological conditions. In particular, certain native breeds exhibit a visible high litter size phenotype due to the selection pressure of natural and artificial for thousands of years, offering an ideal animal model for investigating sheep's fecundity. In this study, selective signal analysis was performed on public whole-genome sequencing data from 60 sheep across eight breeds to identify candidate genes related to litter size. Results revealed that a total of 34,065,017 single-nucleotide polymorphisms (SNPs) were identified from all sheep, and 65 candidate genes (CDGs) were pinpointed from the top 1% of interacted windows and SNPs between the pairwise fixation index (FST, >0.149543) and cross-population extended haplotype homozygosity (XP-EHH, >0.701551). A total of 41 CDGs (e.g. VRTN, EYA2 and MCPH1) were annotated to 576 GO terms, of which seven terms were directly linked to follicular and embryonic development (e.g. TBXT, BMPR1B, and BMP2). In addition, 73 KEGG pathways were enriched by 21 CDGs (e.g. ENTPD5, ABCD4 and RXFP2), mainly related to Hippo (TCF4, BMPR1B and BMP2), TGF-ß (BMPR1B and BMP2), PI3K-Akt (ITGB4, IL4R and PPP2R5A) and Jak-STAT signalling pathways (IL20RA and IL4R). Notably, a series of CDGs was under strong selection in sheep with high litter size traits. These findings result could improve the comprehension of the genetic underpinnings of sheep litter size. Furthermore, it provides valuable CDGS for future molecular breeding.


Assuntos
Tamanho da Ninhada de Vivíparos , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico , Animais , Tamanho da Ninhada de Vivíparos/genética , Carneiro Doméstico/genética , Feminino , Cruzamento , Estudo de Associação Genômica Ampla , Hereditariedade , Seleção Genética , Sequenciamento Completo do Genoma/veterinária , Ovinos/genética
13.
Angiogenesis ; 26(2): 265-278, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36403190

RESUMO

Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor A(VEGF-A) modulates tumor EC response to exclude T-cells are not well understood. Here, we demonstrate that EC-specific deletion of small GTPase Rap1B, previously implicated in normal angiogenesis, restricts tumor growth in endothelial-specific Rap1B-knockout (Rap1BiΔEC) mice. EC-specific Rap1B deletion inhibits angiogenesis, but also leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T-cells. Depletion of CD8+ T-cells restored tumor growth in Rap1BiΔEC mice. Mechanistically, global transcriptome and functional analyses indicated upregulation of signaling by a tumor cytokine, TNF-α, and increased NF-κB transcription in Rap1B-deficient ECs. Rap1B-deficiency led to elevated proinflammatory chemokine and Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was elevated in tumor ECs from Rap1BiΔEC mice. Significantly, Rap1B deletion prevented VEGF-A-induced immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-A-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-A-dependent desensitization of EC to proinflammatory stimuli. Significantly, they identify EC Rap1B as a potential novel vascular target in cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Células Endoteliais , Neoplasias , Proteínas rap de Ligação ao GTP , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Terapia de Imunossupressão , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/imunologia
14.
J Immunol ; 207(8): 1990-2004, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507949

RESUMO

In type 1 diabetes (T1D) autoreactive CD8 T cells infiltrate pancreatic islets and destroy insulin-producing ß cells. Progression to T1D onset is a chronic process, which suggests that the effector activity of ß-cell autoreactive CD8 T cells needs to be maintained throughout the course of disease development. The mechanism that sustains diabetogenic CD8 T cell effectors during the course of T1D progression has not been completely defined. Here we used single-cell RNA sequencing to gain further insight into the phenotypic complexity of islet-infiltrating CD8 T cells in NOD mice. We identified two functionally distinct subsets of activated CD8 T cells, CD44highTCF1+CXCR6- and CD44highTCF1-CXCR6+, in islets of prediabetic NOD mice. Compared with CD44highTCF1+CXCR6- CD8 T cells, the CD44highTCF1-CXCR6+ subset expressed higher levels of inhibitory and cytotoxic molecules and was more prone to apoptosis. Adoptive cell transfer experiments revealed that CD44highTCF1+CXCR6- CD8 T cells, through continuous generation of the CD44highTCF1-CXCR6+ subset, were more capable than the latter population to promote insulitis and the development of T1D. We further showed that direct IL-27 signaling in CD8 T cells promoted the generation of terminal effectors from the CD44highTCF1+CXCR6- population. These results indicate that islet CD44highTCF1+CXCR6- CD8 T cells are a progenitor-like subset with self-renewing capacity, and, under an IL-27-controlled mechanism, they differentiate into the CD44highTCF1-CXCR6+ terminal effector population. Our study provides new insight into the sustainability of the CD8 T cell response in the pathogenesis of T1D.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Interleucina-27/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Células Secretoras de Insulina/imunologia , Camundongos , Camundongos Endogâmicos NOD
15.
Proc Natl Acad Sci U S A ; 117(38): 23730-23741, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32879009

RESUMO

Although plasmacytoid dendritic cells (pDCs) have been shown to play a critical role in generating viral immunity and promoting tolerance to suppress antitumor immunity, whether and how pDCs cross-prime CD8 T cells in vivo remain controversial. Using a pDC-targeted vaccine model to deliver antigens specifically to pDCs, we have demonstrated that pDC-targeted vaccination led to strong cross-priming and durable CD8 T cell immunity. Surprisingly, cross-presenting pDCs required conventional DCs (cDCs) to achieve cross-priming in vivo by transferring antigens to cDCs. Taking advantage of an in vitro system where only pDCs had access to antigens, we further demonstrated that cross-presenting pDCs were unable to efficiently prime CD8 T cells by themselves, but conferred antigen-naive cDCs the capability of cross-priming CD8 T cells by transferring antigens to cDCs. Although both cDC1s and cDC2s exhibited similar efficiency in acquiring antigens from pDCs, cDC1s but not cDC2s were required for cross-priming upon pDC-targeted vaccination, suggesting that cDC1s played a critical role in pDC-mediated cross-priming independent of their function in antigen presentation. Antigen transfer from pDCs to cDCs was mediated by previously unreported pDC-derived exosomes (pDCexos), that were also produced by pDCs under various conditions. Importantly, all these pDCexos primed naive antigen-specific CD8 T cells only in the presence of bystander cDCs, similarly to cross-presenting pDCs, thus identifying pDCexo-mediated antigen transfer to cDCs as a mechanism for pDCs to achieve cross-priming. In summary, our data suggest that pDCs employ a unique mechanism of pDCexo-mediated antigen transfer to cDCs for cross-priming.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Apresentação Cruzada/imunologia , Células Dendríticas/metabolismo , Exossomos/metabolismo , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Exossomos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
Haematologica ; 106(7): 1968-1978, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467143

RESUMO

Pim kinases are upregulated in several forms of cancer, contributing to cell survival and tumour development, but their role in platelet function and thrombotic disease has not been explored. We report for the first time that Pim-1 is expressed in human and mouse platelets. Genetic deletion or pharmacological inhibition of Pim kinase results in reduced thrombus formation but is not associated with impaired haemostasis. Attenuation of thrombus formation was found to be due to inhibition of the thromboxane A2 receptor as effects on platelet function was non-additive to inhibition caused by the cyclooxygenase inhibitor indomethacin or thromboxane A2 receptor antagonist GR32191. Treatment with Pim kinase inhibitors caused reduced surface expression of the thromboxane A2 receptor and resulted in reduced responses to thromboxane A2 receptor agonists, indicating a role for Pim kinase in the regulation of thromboxane A2 receptor function. Our research identifies a novel, Pim kinase dependent regulatory mechanism for the thromboxane A2 receptor and represents a new targeting strategy that is independent of COX-1 inhibition or direct antagonism of the thromboxane A2 receptor that whilst attenuating thrombosis does not increase bleeding.


Assuntos
Receptores de Tromboxano A2 e Prostaglandina H2 , Trombose , Plaquetas , Humanos , Agregação Plaquetária , Proteínas Proto-Oncogênicas c-pim-1/genética , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Trombose/tratamento farmacológico
17.
Circ Res ; 125(12): 1087-1102, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31625810

RESUMO

RATIONALE: A hallmark of chronic inflammatory disorders is persistence of proinflammatory macrophages in diseased tissues. In atherosclerosis, this is associated with dyslipidemia and oxidative stress, but mechanisms linking these phenomena to macrophage activation remain incompletely understood. OBJECTIVE: To investigate mechanisms linking dyslipidemia, oxidative stress, and macrophage activation through modulation of immunometabolism and to explore therapeutic potential targeting specific metabolic pathways. METHODS AND RESULTS: Using a combination of biochemical, immunologic, and ex vivo cell metabolic studies, we report that CD36 mediates a mitochondrial metabolic switch from oxidative phosphorylation to superoxide production in response to its ligand, oxidized LDL (low-density lipoprotein). Mitochondrial-specific inhibition of superoxide inhibited oxidized LDL-induced NF-κB (nuclear factor-κB) activation and inflammatory cytokine generation. RNA sequencing, flow cytometry, 3H-labeled palmitic acid uptake, lipidomic analysis, confocal and electron microscopy imaging, and functional energetics revealed that oxidized LDL upregulated effectors of long-chain fatty acid uptake and mitochondrial import, while downregulating fatty acid oxidation and inhibiting ATP5A (ATP synthase F1 subunit alpha)-an electron transport chain component. The combined effect is long-chain fatty acid accumulation, alteration of mitochondrial structure and function, repurposing of the electron transport chain to superoxide production, and NF-κB activation. Apoe null mice challenged with high-fat diet showed similar metabolic changes in circulating Ly6C+ monocytes and peritoneal macrophages, along with increased CD36 expression. Moreover, mitochondrial reactive oxygen species were positively correlated with CD36 expression in aortic lesional macrophages. CONCLUSIONS: These findings reveal that oxidized LDL/CD36 signaling in macrophages links dysregulated fatty acid metabolism to oxidative stress from the mitochondria, which drives chronic inflammation. Thus, targeting to CD36 and its downstream effectors may serve as potential new strategies against chronic inflammatory diseases such as atherosclerosis.


Assuntos
Antígenos CD36/deficiência , Reprogramação Celular/fisiologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Animais , Antígenos CD36/genética , Células Cultivadas , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Metabolismo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética
18.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728267

RESUMO

Gammaherpesviruses are ubiquitous pathogens that are associated with B cell lymphomas. In the early stages of chronic infection, these viruses infect naive B cells and subsequently usurp the B cell differentiation process through the germinal center response to ensure latent infection of long-lived memory B cells. A unique feature of early gammaherpesvirus chronic infection is a robust differentiation of irrelevant, virus-nonspecific B cells with reactivities against self-antigens and antigens of other species. In contrast, protective, virus-specific humoral responses do not reach peak levels until a much later time. While several host factors are known to either promote or selectively restrict gammaherpesvirus-driven germinal center response, viral mechanisms that contribute to the irrelevant B cell response have not been defined. In this report we show that the expression and the enzymatic activity of the gammaherpesvirus-encoded conserved protein kinase selectively facilitates the irrelevant, but not virus-specific, B cell responses. Further, we show that lack of interleukin-1 (IL-1) receptor attenuates gammaherpesvirus-driven B cell differentiation and viral reactivation. Because germinal center B cells are thought to be the target of malignant transformation during gammaherpesvirus-driven lymphomagenesis, identification of host and viral factors that promote germinal center responses during gammaherpesvirus infection may offer an insight into the mechanism of gammaherpesvirus pathogenesis.IMPORTANCE Gammaherpesviruses are ubiquitous cancer-associated pathogens that usurp the B cell differentiation process to establish life-long latent infection in memory B cells. A unique feature of early gammaherpesvirus infection is the robust increase in differentiation of B cells that are not specific for viral antigens and instead encode antibodies that react with self-antigens and antigens of other species. Viral mechanisms that are involved in driving such irrelevant B cell differentiation are not known. Here, we show that gammaherpesvirus-encoded conserved protein kinase and host IL-1 signaling promote irrelevant B cell responses and gammaherpesvirus-driven germinal center responses, with the latter thought to be the target of viral transformation.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Gammaherpesvirinae/imunologia , Ativação Linfocitária , Proteínas Quinases/imunologia , Proteínas Virais/imunologia , Animais , Linfócitos B/patologia , Gammaherpesvirinae/genética , Centro Germinativo/imunologia , Centro Germinativo/patologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Camundongos , Camundongos Knockout , Proteínas Quinases/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Proteínas Virais/genética
19.
Immunity ; 35(5): 792-805, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118527

RESUMO

Memory CD8(+) T cells are critical for long-term immunity, but the genetic pathways governing their formation remain poorly defined. This study shows that the IL-10-IL-21-STAT3 pathway is critical for memory CD8(+) T cell development after acute LCMV infection. In the absence of either interleukin-10 (IL-10) and IL-21 or STAT3, virus-specific CD8(+) T cells retain terminal effector (TE) differentiation states and fail to mature into protective memory T cells that contain self-renewing central memory T cells. Expression of Eomes, BCL-6, Blimp-1, and SOCS3 was considerably reduced in STAT3-deficient memory CD8(+) T cells, and BCL-6- or SOCS3-deficient CD8(+) T cells also had perturbed memory cell development. Reduced SOCS3 expression rendered STAT3-deficient CD8(+) T cells hyperresponsive to IL-12, suggesting that the STAT3-SOCS3 pathway helps to insulate memory precursor cells from inflammatory cytokines that drive TE differentiation. Thus, memory CD8(+) T cell precursor maturation is an active process dependent on IL-10-IL-21-STAT3 signaling.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interleucina-10/metabolismo , Interleucinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Immunity ; 35(4): 633-46, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22018471

RESUMO

CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4(+) T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8(+) T cells, increased IL-7R expression was not a reliable marker of CD4(+) memory precursor cells. However, decreased Ly6C and T-bet (Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C(lo)T-bet(int) Th1 effector cells was virtually identical to mature memory CD4(+) T cells, indicating early maturation of memory CD4(+) T cell features in this subset during acute viral infection. This study provides a framework for memory CD4(+) T cell development after acute viral infection.


Assuntos
Antígenos Ly/imunologia , Memória Imunológica , Proteínas com Domínio T/imunologia , Células Th1/imunologia , Animais , Antígenos Ly/genética , Proliferação de Células , Regulação da Expressão Gênica , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas com Domínio T/genética , Células Th1/citologia , Células Th1/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA