Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(8): 4576-4582, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28650641

RESUMO

The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe3O4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe3O4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe3O4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe3O4, as the surface reduction of nano-Fe3O4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe3O4 and the extremely strong adhesion between Au and the reduced Fe3O4. This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

2.
Inorg Chem ; 55(5): 2413-20, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878202

RESUMO

Catalyst support materials of tetragonal ZrO2, stabilized by either La2O3 (La2O3-ZrO2) or CeO2 (CeO2-ZrO2), were synthesized under hydrothermal conditions at 200 °C with NH4OH or tetramethylammonium hydroxide as the mineralizer. From in situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La2O3-ZrO2 and CeO2-ZrO2 supports were nonporous nanocrystallites that exhibited rectangular shapes with a thermal stability of up to 1000 °C in air. These supports had an average size of ∼ 10 nm and a surface area of 59-97 m(2)/g. The catalysts Pt/La2O3-ZrO2 and Pt/CeO2-ZrO2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3 to 12.4 wt %. Monodispersed Pt nanoparticles of ∼ 3 nm were obtained for these catalysts. The incorporation of La2O3 and CeO2 into the t-ZrO2 structure did not affect the nature of the active sites for the Pt/ZrO2 catalysts for the water-gas shift reaction.

3.
JACS Au ; 1(4): 396-408, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467303

RESUMO

Industrial low-temperature methane combustion catalyst Pd/Al2O3 suffers from H2O-induced deactivation. It is imperative to design Pd catalysts free from this deactivation and with high atomic efficiency. Using a small-pore zeolite SSZ-13 as support, herein we report well-defined Pd catalysts with dominant active species as finely dispersed Pd cations, uniform PdO particles embedded inside the zeolite framework, or PdO particles decorating the zeolite external surface. Through detailed reaction kinetics and spectroscopic and microscopic studies, we show that finely dispersed sites are much less active than PdO nanoparticles. We further demonstrate that H2O-induced deactivation can be readily circumvented by using zeolite supports with high Si/Al ratios. Finally, we provide a few rational catalyst design suggestions for methane oxidation based on the new knowledge learned in this study.

4.
J Hazard Mater ; 399: 123012, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544766

RESUMO

Environmental fate, behavior and effects of hazardous organic compounds have recently received great attention in diverse environmental phases, including water, atmosphere, soil and sediment. Considering polydimethylsiloxane (PDMS) fibers were validated for the wide application in the determination of partition behavior in passive sampling, in this work, several in silico models were established to predict PDMS-water (KPDMS-w), PDMS-air (KPDMS-a) and PDMS-seawater partition coefficients (KPDMS-sw) of diverse chemicals. This is an attempt to combine conventional linear method and popular nonlinear algorithm for the estimation of partition coefficients between PDMS and different environmental media. All of the developed models showed satisfactory goodness-of-fit with high adjusted correlation coefficient (R2adj) and were validated to be robust, stable and predictable by various internal and external validation techniques, deriving a wide series of statistical checks. Moreover, it was found that hydrophobicity, polarizability, charge distribution and molecular size of compounds contributed significantly to the model development by interpreting the selected descriptors. Based on the broad applicability domains (ADs), the current study provides suitable tools to fill the experimental data gap for other compounds and to help researchers better understand the mechanistic basis of adsorption behavior of PDMS.

5.
Nat Commun ; 11(1): 5849, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208734

RESUMO

Molecular interactions with both oxides and metals are essential for heterogenous catalysis, leading to remarkable synergistic impacts on activity and selectivity. Here, we show that the direct link between the two phases (and not merely being together) is required to selectively hydrogenate CO2 to methanol on catalysts containing Cu and ZrO2. Materials consisting of isolated Cu particles or atomically dispersed Cu-O-Zr sites only catalyze the reverse water-gas shift reaction. In contrast, a metal organic framework structure (UiO-66) with Cu nanoparticles occupying missing-linker defects maximizes the fraction of metallic Cu interfaced to ZrO2 nodes leading to a material with high adsorption capacity for CO2 and high activity and selectivity for low-temperature methanol synthesis.

6.
Nanotechnology ; 20(44): 445601, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19801774

RESUMO

In this paper, ultrathin (about 2.5 nm) manganite (MnOOH) nanowires were synthesized by a simple wet chemical method at ambient temperature. Temperature-dependent phase transition patterns of the prepared nanowires under different atmospheres were systematically studied with thermogravimetric and differential thermal analysis (TG/DTA). Based on the critical temperatures demonstrated by the phase transition pattern, manganese oxides, such as Mn2O3 and Mn3O4, have been obtained conveniently through calcination. Scanning electron microscope (SEM), transmission electron microscope (TEM) and x-ray diffraction results confirm that the annealed nanowires can both retain their original 1D morphology and show good crystallinity. The electrocatalytic performance of the as-prepared manganese oxides was also explored, which showed good response to the reduction of H2O2 in alkaline media. Among the three manganese oxides, the MnOOH nanowires exhibited the most prominent electrocatalytic efficiency and stability, which provides a good candidate for modern industrial catalysis applications.

7.
Nat Commun ; 9(1): 5258, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531995

RESUMO

Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt3Ti and surface Pt3Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti3C2Tx and Pt/Nb2CTx catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C-H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.

8.
Chem Commun (Camb) ; 48(11): 1683-5, 2012 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-22182979

RESUMO

Hollow Pd/Sn bimetallic nanocrystals were fabricated by a fast one-pot strategy in an oleylamine system. This method produced a fine single crystalline bimetallic hollow nanostructure. The process and influencing factors of the reaction are also discussed in this work. Bimetallic nanoparticles possessing special hollow structures with single-crystalline nature are expected to have particular electronic, mechanical and optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA