Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 74: 92-103, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28919106

RESUMO

A multitude of information sources is present in the electronic health record (EHR), each of which can contain clues to automatically assign diagnosis and procedure codes. These sources however show information overlap and quality differences, which complicates the retrieval of these clues. Through feature selection, a denser representation with a consistent quality and less information overlap can be obtained. We introduce and compare coverage-based feature selection methods, based on confidence and information gain. These approaches were evaluated over a range of medical specialties, with seven different medical specialties for ICD-9-CM code prediction (six at the Antwerp University Hospital and one in the MIMIC-III dataset) and two different medical specialties for ICD-10-CM code prediction. Using confidence coverage to integrate all sources in an EHR shows a consistent improvement in F-measure (49.83% for diagnosis codes on average), both compared with the baseline (44.25% for diagnosis codes on average) and with using the best standalone source (44.41% for diagnosis codes on average). Confidence coverage creates a concise patient stay representation independent of a rigid framework such as UMLS, and contains easily interpretable features. Confidence coverage has several advantages to a baseline setup. In our baseline setup, feature selection was limited to a filter removing features with less than five total occurrences in the trainingset. Prediction results improved consistently when using multiple heterogeneous sources to predict clinical codes, while reducing the number of features and the processing time.


Assuntos
Registros Eletrônicos de Saúde , Classificação Internacional de Doenças , Algoritmos , Humanos
2.
BioData Min ; 11: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202444

RESUMO

Searching for interesting common subgraphs in graph data is a well-studied problem in data mining. Subgraph mining techniques focus on the discovery of patterns in graphs that exhibit a specific network structure that is deemed interesting within these data sets. The definition of which subgraphs are interesting and which are not is highly dependent on the application. These techniques have seen numerous applications and are able to tackle a range of biological research questions, spanning from the detection of common substructures in sets of biomolecular compounds, to the discovery of network motifs in large-scale molecular interaction networks. Thus far, information about the bioinformatics application of subgraph mining remains scattered over heterogeneous literature. In this review, we provide an introduction to subgraph mining for life scientists. We give an overview of various subgraph mining algorithms from a bioinformatics perspective and present several of their potential biomedical applications.

3.
BioData Min ; 8: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25657820

RESUMO

BACKGROUND: The three-dimensional structure of a protein is an essential aspect of its functionality. Despite the large diversity in protein structures and functionality, it is known that there are common patterns and preferences in the contacts between amino acid residues, or between residues and other biomolecules, such as DNA. The discovery and characterization of these patterns is an important research topic within structural biology as it can give fundamental insight into protein structures and can aid in the prediction of unknown structures. RESULTS: Here we apply an efficient spatial pattern miner to search for sets of amino acids that occur frequently in close spatial proximity in the protein structures of the Protein DataBank. This allowed us to mine for a new class of amino acid patterns, that we term FreSCOs (Frequent Spatially Cohesive Component sets), which feature synergetic combinations. To demonstrate the relevance of these FreSCOs, they were compared in relation to the thermostability of the protein structure and the interaction preferences of DNA-protein complexes. In both cases, the results matched well with prior investigations using more complex methods on smaller data sets. CONCLUSIONS: The currently characterized protein structures feature a diverse set of frequent amino acid patterns that can be related to the stability of the protein molecular structure and that are independent from protein function or specific conserved domains.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26356855

RESUMO

In this paper we present a cohesive structural itemset miner aiming to discover interesting patterns in a set of data objects within a multidimensional spatial structure by combining the cohesion and the support of the pattern. We propose two ways to build the itemset miner, VertexOne and VertexAll, in an attempt to find a balance between accuracy and run-times. The experiments show that VertexOne performs better, and finds almost the same itemsets as VertexAll in a much shorter time. The usefulness of the method is demonstrated by applying it to find interesting patterns of amino acids in spatial proximity within a set of proteins based on their atomic coordinates in the protein molecular structure. Several patterns found by the cohesive structural itemset miner contain amino acids that frequently co-occur in the spatial structure, even if they are distant in the primary protein sequence and only brought together by protein folding. Further various indications were found that some of the discovered patterns seem to represent common underlying support structures within the proteins.


Assuntos
Biologia Computacional/métodos , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Algoritmos , Mineração de Dados , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA