Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 22(1): 302-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26608231

RESUMO

For the first time, a versatile electrolyte bath is described that can be used to electrodeposit a wide range of p-block elements from supercritical difluoromethane (scCH2 F2 ). The bath comprises the tetrabutylammonium chlorometallate complex of the element in an electrolyte of 50×10(-3)  mol dm(-3) tetrabutylammonium chloride at 17.2 MPa and 358 K. Through the use of anionic ([GaCl4 ](-) , [InCl4 ](-) , [GeCl3 ](-) , [SnCl3 ](-) , [SbCl4 ](-) , and [BiCl4 ](-) ) and dianionic ([SeCl6 ](2-) and [TeCl6 ](2-) ) chlorometallate salts, the deposition of elemental Ga, In, Ge, Sn, Sb, Bi, Se, and Te is demonstrated. In all cases, with the exception of gallium, which is a liquid under the deposition conditions, the resulting deposits are characterised by SEM, energy-dispersive X-ray analysis, XRD and Raman spectroscopy. An advantage of this electrolyte system is that the reagents are all crystalline solids, reasonably easy to handle and not highly water or oxygen sensitive. The results presented herein significantly broaden the range of materials accessible by electrodeposition from supercritical fluid and open up the future possibility of utilising the full scope of these unique fluids to electrodeposit functional binary or ternary alloys and compounds of these elements.

2.
Chemistry ; 20(17): 5019-27, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24644266

RESUMO

The Ge(IV) chlorometallate complexes, [EMIM]2 [GeCl6 ], [EDMIM]2 [GeCl6 ] and [PYRR]2 [GeCl6 ] (EMIM=1-ethyl-3-methylimidazolium; EDMIM=2,3-dimethyl-1-ethylimidazolium; PYRR=N-butyl-N-methylpyrrolidinium) have been synthesised and fully characterised; the first two also by single-crystal X-ray diffraction. The imidazolium chlorometallates exhibited significant CH⋅⋅⋅Cl hydrogen bonds, resulting in extended supramolecular assemblies in the solid state. Solution (1) H NMR data also showed cation-anion association. The synthesis and characterisation of Ge(II) halometallate salts [EMIM][GeX3 ] (X=Cl, Br, I) and [PYRR][GeCl3 ], including single-crystal X-ray analyses for the homologous series of imidazolium salts, are reported. In these complexes, the intermolecular interactions are much weaker in the solid state and they appear not to be significantly associated in solution. Cyclic-voltammetry experiments on the Ge(IV) species in CH2 Cl2 solution showed two distinct, irreversible reduction waves attributed to Ge(IV) -Ge(II) and Ge(II) -Ge(0) , whereas the Ge(II) species exhibited one irreversible reduction wave. The potential for the Ge(II) -Ge(0) reduction was unaffected by changing the cation, although altering the oxidation state of the precursor from Ge(IV) to Ge(II) does have an effect; for a given cation, reduction from the [GeCl3 ](-) salts occurred at a less cathodic potential. The nature of the halide co-ligand also has a marked influence on the reduction potential for the Ge(II) -Ge(0) couple, such that the reduction potentials for the [GeX3 ](-) salts become significantly less cathodic when the halide (X) is changed Cl→Br→I.

3.
J Am Chem Soc ; 134(2): 1228-34, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22191733

RESUMO

Thin mesoporous films of α-Fe(2)O(3) have been prepared on conducting glass substrates using layer-by-layer self-assembly of ca. 4 nm hydrous oxide nanoparticles followed by calcining. The electrodes were used to study the oxygen evolution reaction (OER) in the dark and under illumination using in situ potential-modulated absorption spectroscopy (PMAS) and light-modulated absorption spectroscopy (LMAS) combined with impedance spectroscopy. Formation of surface-bound higher-valent iron species (or "surface trapped holes") was deduced from the PMAS spectra measured in the OER onset region. Similar LMAS spectra were obtained at more negative potentials in the onset region of photoelectrochemical OER, indicating involvement of the same intermediates. The impedance response of the mesoporous α-Fe(2)O(3) electrodes exhibits characteristic transmission line behavior that is attributed to slow hopping of holes, probably between surface iron species. Frequency-resolved PMAS and LMAS measurements revealed slow relaxation behavior that can be related to the impedance response and that indicates that the lifetime of the intermediates (or trapped holes) involved in the OER is remarkably long.

4.
Chem Commun (Camb) ; 48(14): 2027-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22234656

RESUMO

Rate constants for recombination and hole transfer during oxygen evolution at illuminated α-Fe(2)O(3) electrodes were measured by intensity-modulated photocurrent spectroscopy and found to be remarkably low. Treatment of the electrode with a Co(II) solution suppressed surface recombination but did not catalyse hole transfer. Intermediates in the reaction were detected spectroscopically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA