RESUMO
Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.
Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Proteoma/genética , Proteoma/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Linhagem Celular TumoralRESUMO
BACKGROUND AND OBJECTIVES: Retroperitoneal and abdominopelvic sarcomas are rare heterogeneous malignancies. The only therapy proven to improve disease-free survival (DFS) is R0/R1 surgical resection. We sought to analyze whether additional factors such as radiation and systemic therapy were associated with DFS and abdominal recurrence-free survival (RFS). METHODS: Retrospective review of adults (≥18) with resectable abdominopelvic and retroperitoneal sarcomas who underwent intent-to-cure surgery at a high-volume tertiary referral center between 1998 and 2015. The main outcome measures were DFS and abdominal RFS. RESULTS: Overall, 159 patients met the criteria for inclusion. Median follow-up was 4.8 years (range 0.1-18.9 years). The most common histology was liposarcoma (49%). Systemic therapy was administered to 48% of patients and was not associated with improved outcomes. The neoadjuvant radiotherapy group (11%) had improved adjusted DFS (5.46 years, 95% CI [3.68, 7.24] vs. 3.1 years, 95% CI [2.48, 3.73]) and abdominal RFS (6.14 years, 95% CI [4.38, 7.89] vs. 3.22 years, 95% CI [2.61, 3.84]). The adjuvant radiotherapy group (19%) had no improvement. CONCLUSIONS: In a cohort of patients undergoing resection for retroperitoneal or abdominopelvic sarcoma, neoadjuvant radiation improved DFS and abdominal RFS. A follow-up of over three years was needed to appreciate a difference in outcomes.
Assuntos
Lipossarcoma , Neoplasias Retroperitoneais , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Intervalo Livre de Doença , Humanos , Lipossarcoma/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Retroperitoneais/patologia , Neoplasias Retroperitoneais/cirurgia , Estudos Retrospectivos , Sarcoma/patologia , Sarcoma/cirurgiaRESUMO
Circulating microvesicles are able to mediate long-distance cell-cell communications. It is essential to understand how microvesicles from pancreatic cancer act on other cells in the body. In this work, serum-derived microvesicles were isolated from 10 patients with locally advanced pancreatic cancer and healthy controls. Using Cell Transwell and WST-1 reagents, we found that microvesicles from pancreatic cancer accelerated migration and proliferation of PANC-1 cells. Meanwhile, the proliferation of these cancer-microvesicle-treated cells (CMTCs) was affected less by 10 µM of gemcitabine relative to healthy microvesicle-treated cells (HMTCs). Next, we optimized the filter-aided sample preparation method to increase the recovery of protein samples and then applied it to the quantification of the proteome of CMTCs and HMTCs. The peptides were labeled and analyzed by liquid chromatography-tandem mass spectrometry. In total, 4102 proteins were identified, where 35 proteins were up-regulated with 27 down-regulated in CMTCs. We verified the quantitative results of three key proteins CD44, PPP2R1A, and TP53 by Western blot. The Ingenuity Pathway Analysis revealed pathways that cancer microvesicles might participate in to promote cell migration and proliferation. These findings may provide novel clues of treatment for tumorigenesis and metastasis.
Assuntos
Micropartículas Derivadas de Células/transplante , Neoplasias Pancreáticas/patologia , Antimetabólitos Antineoplásicos/farmacologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Micropartículas Derivadas de Células/fisiologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação da Expressão Gênica , Humanos , Receptores de Hialuronatos/análise , Proteína Fosfatase 2/análise , Proteoma/análise , Proteína Supressora de Tumor p53/análise , GencitabinaRESUMO
Circulating exosomes in bodily fluids such as blood are being actively studied as a rich source of chemical biomarkers for cancer diagnosis and monitoring. Although nucleic acid analysis is a primary tool for the discovery of circulating biomarkers in exosomes, metabolomics holds the potential of expanding the chemical diversity of biomarkers that may be easy and rapid to detect. However, only trace amounts of exosomes can be isolated from a small volume of patient blood, and thus a very sensitive technique is required to analyze the metabolome of exosomes. In this report, we present a workflow that involves multiple cycles of ultracentrifugation for exosome isolation using a starting material of 2 mL of human serum, freeze-thaw-cycles in 50% methanol/water for exosome lysis and metabolite extraction, differential chemical isotope labeling (CIL) of metabolites for enhancing liquid chromatography (LC) separation and improving mass spectrometry (MS) detection, and nanoflow LC-MS (nLC-MS) with captivespray for analysis. As a proof-of-principle, we used dansylation labeling to analyze the amine- and phenol-submetabolomes in two sets of exosome samples isolated from the blood samples of five pancreatic cancer patients before and after chemotherapy treatment. The average number of peak pairs or metabolites detected was 1964 ± 60 per sample for a total of 2446 peak pairs ( n = 10) in the first set and 1948 ± 117 per sample for a total of 2511 peak pairs ( n = 10) in the second set. There were 101 and 94 metabolites positively identified in the first and second set, respectively, and 1580 and 1590 peak pairs with accurate masses matching those of metabolites in the MyCompoundID metabolome database. Analyzing the mixtures of 12C-labeled individual exosome samples spiked with a 13C-labeled pooled sample which served as an internal standard allowed relative quantification of metabolomic changes of exosomes of blood samples collected before and after treatment.
Assuntos
Exossomos/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Soro/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Exossomos/química , Humanos , Marcação por Isótopo/métodos , Metaboloma , Soro/química , Ultracentrifugação/métodosRESUMO
Pancreatic cancer is the third leading cause of cancer-related death in the USA. Despite extensive research, minimal improvements in patient outcomes have been achieved. Early identification of treatment response and metastasis would be valuable to determine the appropriate therapeutic course for patients. In this work, we isolated exosomes from the serum of 10 patients with locally advanced pancreatic cancer at serial time points over a course of therapy, and quantitative analysis was performed using the iTRAQ method. We detected approximately 700-800 exosomal proteins per sample, several of which have been implicated in metastasis and treatment resistance. We compared the exosomal proteome of patients at different time points during treatment to healthy controls and identified eight proteins that show global treatment-specific changes. We then tested the effect of patient-derived exosomes on the migration of tumor cells and found that patient-derived exosomes, but not healthy controls, induce cell migration, supporting their role in metastasis. Our data show that exosomes can be reliably extracted from patient serum and analyzed for protein content. The differential loading of exosomes during a course of therapy suggests that exosomes may provide novel insights into the development of treatment resistance and metastasis.
Assuntos
Proteínas Sanguíneas/genética , Recidiva Local de Neoplasia/sangue , Neoplasias Pancreáticas/sangue , Proteoma/genética , Proteínas Sanguíneas/biossíntese , Exossomos/efeitos dos fármacos , Exossomos/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapiaRESUMO
ABSTRACT: Up to 10% of patients with locally advanced rectal cancer will experience locoregional recurrence. In the setting of prior surgery and often radiation and chemotherapy, these represent uniquely challenging cases. When feasible, surgical resection offers the best chance for oncologic control yet risks significant morbidity. Studies have consistently indicated that a negative surgical resection margin is the strongest predictor of oncologic outcomes. Chemoradiation is often recommended to increase the chance of an R0 resection, and in cases of close/positive margins, intraoperative radiation/brachytherapy can be utilized. In patients who are not surgical candidates, radiation can provide symptomatic relief. Ongoing phase III trials are aiming to address questions regarding the role of reirradiation and induction multiagent chemotherapy regimens in this population.
Assuntos
Recidiva Local de Neoplasia , Neoplasias Retais , Humanos , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Quimiorradioterapia/métodos , Terapia Combinada/métodos , Resultado do Tratamento , Margens de Excisão , Braquiterapia/métodosRESUMO
Functional liver parenchyma can be damaged from treatment of liver malignancies with 90Y selective internal radiation therapy (SIRT). Evaluating functional parenchymal changes and developing an absorbed dose (AD)-toxicity model can assist the clinical management of patients receiving SIRT. We aimed to determine whether there is a correlation between 90Y PET AD voxel maps and spatial changes in the nontumoral liver (NTL) function derived from dynamic gadoxetic acid-enhanced MRI before and after SIRT. Methods: Dynamic gadoxetic acid-enhanced MRI scans were acquired before and after treatment for 11 patients undergoing 90Y SIRT. Gadoxetic acid uptake rate (k1) maps that directly quantify spatial liver parenchymal function were generated from MRI data. Voxel-based AD maps, derived from the 90Y PET/CT scans, were binned according to AD. Pre- and post-SIRT k1 maps were coregistered to the AD map. Absolute and percentage k1 loss in each bin was calculated as a measure of loss of liver function, and Spearman correlation coefficients between k1 loss and AD were evaluated for each patient. Average k1 loss over the patients was fit to a 3-parameter logistic function based on AD. Patients were further stratified into subgroups based on lesion type, baseline albumin-bilirubin scores and alanine transaminase levels, dose-volume effect, and number of SIRT treatments. Results: Significant positive correlations (ρ = 0.53-0.99, P < 0.001) between both absolute and percentage k1 loss and AD were observed in most patients (8/11). The average k1 loss over 9 patients also exhibited a significant strong correlation with AD (ρ ≥ 0.92, P < 0.001). The average percentage k1 loss of patients across AD bins was 28%, with a logistic function model demonstrating about a 25% k1 loss at about 100 Gy. Analysis between patient subgroups demonstrated that k1 loss was greater among patients with hepatocellular carcinoma, higher alanine transaminase levels, larger fractional volumes of NTL receiving an AD of 70 Gy or more, and sequential SIRT treatments. Conclusion: Novel application of multimodality imaging demonstrated a correlation between 90Y SIRT AD and spatial functional liver parenchymal degradation, indicating that a higher AD is associated with a larger loss of local hepatocyte function. With the developed response models, PET-derived AD maps can potentially be used prospectively to identify localized damage in liver and to enhance treatment strategies.
Assuntos
Fígado , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Ítrio , Humanos , Masculino , Feminino , Fígado/diagnóstico por imagem , Pessoa de Meia-Idade , Radioisótopos de Ítrio/uso terapêutico , Idoso , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Gadolínio DTPA , Testes de Função Hepática , Dosagem RadioterapêuticaRESUMO
Background: Adaptive treatment strategies that can dynamically react to individual cancer progression can provide effective personalized care. Longitudinal multi-omics information, paired with an artificially intelligent clinical decision support system (AI-CDSS) can assist clinicians in determining optimal therapeutic options and treatment adaptations. However, AI-CDSS is not perfectly accurate, as such, clinicians' over/under reliance on AI may lead to unintended consequences, ultimately failing to develop optimal strategies. To investigate such collaborative decision-making process, we conducted a Human-AI interaction case study on response-adaptive radiotherapy (RT). Methods: We designed and conducted a two-phase study for two disease sites and two treatment modalities-adaptive RT for non-small cell lung cancer (NSCLC) and adaptive stereotactic body RT for hepatocellular carcinoma (HCC)-in which clinicians were asked to consider mid-treatment modification of the dose per fraction for a number of retrospective cancer patients without AI-support (Unassisted Phase) and with AI-assistance (AI-assisted Phase). The AI-CDSS graphically presented trade-offs in tumor control and the likelihood of toxicity to organs at risk, provided an optimal recommendation, and associated model uncertainties. In addition, we asked for clinicians' decision confidence level and trust level in individual AI recommendations and encouraged them to provide written remarks. We enrolled 13 evaluators (radiation oncology physicians and residents) from two medical institutions located in two different states, out of which, 4 evaluators volunteered in both NSCLC and HCC studies, resulting in a total of 17 completed evaluations (9 NSCLC, and 8 HCC). To limit the evaluation time to under an hour, we selected 8 treated patients for NSCLC and 9 for HCC, resulting in a total of 144 sets of evaluations (72 from NSCLC and 72 from HCC). Evaluation for each patient consisted of 8 required inputs and 2 optional remarks, resulting in up to a total of 1440 data points. Results: AI-assistance did not homogeneously influence all experts and clinical decisions. From NSCLC cohort, 41 (57%) decisions and from HCC cohort, 34 (47%) decisions were adjusted after AI assistance. Two evaluations (12%) from the NSCLC cohort had zero decision adjustments, while the remaining 15 (88%) evaluations resulted in at least two decision adjustments. Decision adjustment level positively correlated with dissimilarity in decision-making with AI [NSCLC: ρ = 0.53 ( p < 0.001); HCC: ρ = 0.60 ( p < 0.001)] indicating that evaluators adjusted their decision closer towards AI recommendation. Agreement with AI-recommendation positively correlated with AI Trust Level [NSCLC: ρ = 0.59 ( p < 0.001); HCC: ρ = 0.7 ( p < 0.001)] indicating that evaluators followed AI's recommendation if they agreed with that recommendation. The correlation between decision confidence changes and decision adjustment level showed an opposite trend [NSCLC: ρ = -0.24 ( p = 0.045), HCC: ρ = 0.28 ( p = 0.017)] reflecting the difference in behavior due to underlying differences in disease type and treatment modality. Decision confidence positively correlated with the closeness of decisions to the standard of care (NSCLC: 2 Gy/fx; HCC: 10 Gy/fx) indicating that evaluators were generally more confident in prescribing dose fractionations more similar to those used in standard clinical practice. Inter-evaluator agreement increased with AI-assistance indicating that AI-assistance can decrease inter-physician variability. The majority of decisions were adjusted to achieve higher tumor control in NSCLC and lower normal tissue complications in HCC. Analysis of evaluators' remarks indicated concerns for organs at risk and RT outcome estimates as important decision-making factors. Conclusions: Human-AI interaction depends on the complex interrelationship between expert's prior knowledge and preferences, patient's state, disease site, treatment modality, model transparency, and AI's learned behavior and biases. The collaborative decision-making process can be summarized as follows: (i) some clinicians may not believe in an AI system, completely disregarding its recommendation, (ii) some clinicians may believe in the AI system but will critically analyze its recommendations on a case-by-case basis; (iii) when a clinician finds that the AI recommendation indicates the possibility for better outcomes they will adjust their decisions accordingly; and (iv) When a clinician finds that the AI recommendation indicate a worse possible outcome they will disregard it and seek their own alternative approach.
RESUMO
End stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis. Elevated ammonia promoted cancer stem cell properties in vitro and tumor initiation in vivo. Enhancing ammonia clearance reduced HCC stemness and tumor growth. In patients, elevations in serum ammonia were associated with an increased incidence of HCC. Taken together, this study forms the foundation for clinical investigations using ammonia lowering agents as potential therapies to mitigate HCC incidence and aggressiveness.
RESUMO
During the past 30 years, several advances have been made allowing for safer and more effective treatment of patients with liver cancer. This report reviews recent advances in radiation therapy for primary liver cancers including hepatocellular carcinoma and intrahepatic cholangiocarcinoma. First, studies focusing on liver stereotactic body radiation therapy (SBRT) are reviewed focusing on lessons learned and knowledge gained from early pioneering trials. Then, new technologies to enhance SBRT treatments are explored including adaptive therapy and MRI-guided and biology-guided radiation therapy. Finally, treatment with Y-90 transarterial radioembolization is reviewed with a focus on novel approaches focused on personalized therapy.
Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Radioisótopos de Ítrio , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/patologia , Radiocirurgia/efeitos adversos , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologiaRESUMO
ABSTRACT: In this article, as part of this special issue on biomarkers of early response, we review currently available reports regarding magnetic resonance imaging apparent diffusion coefficient (ADC) changes in hepatocellular carcinoma (HCC) in response to stereotactic body radiation therapy. We compare diffusion image acquisition, ADC analysis, methods for HCC response assessment, and statistical methods for prediction of local tumor progression by ADC metrics. We discuss the pros and cons of these studies. Following detailed analyses of existing investigations, we cannot conclude that ADC is established as an imaging biomarker for stereotactic body radiation therapy assessment in HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Biomarcadores , Estudos RetrospectivosRESUMO
Purpose: Patients with pancreatic cancer undergoing chemoradiation therapy may experience acute and chronic side effects. We conducted an exploratory analysis of patients with locally advanced pancreatic cancer (LAPC) undergoing definitive chemoradiation to identify factors influencing the occurrence of gastrointestinal (GI) bleeding, short-term radiation side effects, patterns of failure, and survival. Methods and Materials: Under an institutional review board-approved protocol, we retrospectively studied patients with LAPC treated with chemoradiation. Statistical models were used to test associations between clinical characteristics and outcomes, including upper GI bleeding, radiation treatment breaks, and weight loss during therapy. Results: Between 1999 and 2012, 211 patients were treated with radiation for pancreatic cancer. All patients received concurrent chemotherapy with either gemcitabine (174) or 5-fluorouracil (27), and 67 received intensity modulated radiation therapy (IMRT). Overall, 18 patients experienced an upper GI bleed related to treatment, with 70% of bleeds occurring in the stomach or duodenum, and among those patients, 11 (61%) patients had a pancreatic head tumor and 17 (94%) patients had a metallic biliary stent. IMRT was associated with decreased risk of postradiation nausea (odds ratio, 0.27 [0.11, 0.67], P = .006) compared with 3-dimensional conformal radiation. Regarding long-term toxicities, patients with a metallic biliary stent at the time of radiation therapy were at a significantly higher risk of developing upper GI bleeding (unadjusted hazard ratio [HR], 15.41 [2.02, 117.42], P = .008), even after controlling for radiation treatment modality and prescribed radiation dose (adjusted HR, 17.38 [2.26, 133.58], P = .006). Furthermore, biliary stent placement was associated with a higher risk of death (HR, 1.99 [1.41, 2.83], P < .001) after adjusting for demographic, treatment-related, and patient-related variables. Conclusions: Metallic biliary stents may be associated with an increased risk of upper GI bleeding and mortality. Furthermore, IMRT was associated with less nausea and short-term toxicity compared with 3-dimensional conformal therapy.
RESUMO
There is debate about why stereotactic body radiation therapy (SBRT) produces superior control of hepatocellular cancer (HCC) compared to fractionated treatment. Both preclinical and clinical evidence has been presented to support a "classic" biological explanation: the greater BED of SBRT produces more DNA damage and tumor cell kill. More recently, preclinical evidence has supported the concept of a "new biology", particularly radiation-induced vascular collapse, which increases hypoxia and free radical activation. This is hypothesized to cause much greater tumor cell death than was produced by the initial radiation-induced DNA damage to the tumor. We decided to investigate if vascular collapse occurs after standard SBRT for patients with HCC. Eight patients with 10 lesions underwent dynamic contrast enhanced MRI at the time of simulation and either 48 or 96 hours after the first fraction. Only three of 10 tumors showed a decrease in blood flow. These findings suggest that vascular collapse does not typically occur after SBRT for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Radiocirurgia/efeitos adversos , Fracionamento da Dose de Radiação , Dano ao DNARESUMO
Ionizing radiation acoustic imaging (iRAI) allows online monitoring of radiation's interactions with tissues during radiation therapy, providing real-time, adaptive feedback for cancer treatments. We describe an iRAI volumetric imaging system that enables mapping of the three-dimensional (3D) radiation dose distribution in a complex clinical radiotherapy treatment. The method relies on a two-dimensional matrix array transducer and a matching multi-channel preamplifier board. The feasibility of imaging temporal 3D dose accumulation was first validated in a tissue-mimicking phantom. Next, semiquantitative iRAI relative dose measurements were verified in vivo in a rabbit model. Finally, real-time visualization of the 3D radiation dose delivered to a patient with liver metastases was accomplished with a clinical linear accelerator. These studies demonstrate the potential of iRAI to monitor and quantify the 3D radiation dose deposition during treatment, potentially improving radiotherapy treatment efficacy using real-time adaptive treatment.
Assuntos
Neoplasias , Planejamento da Radioterapia Assistida por Computador , Coelhos , Animais , Planejamento da Radioterapia Assistida por Computador/métodos , Diagnóstico por Imagem , Fígado/diagnóstico por imagem , Doses de Radiação , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapiaRESUMO
Objective.90Y selective internal radiation therapy (SIRT) treatment of hepatocellular carcinoma (HCC) can potentially underdose lesions, as identified on post-therapy PET/CT imaging. This study introduces a methodology and explores the feasibility for selectively treating SIRT-underdosed HCC lesions, or lesion subvolumes, with stereotactic body radiation therapy (SBRT) following post-SIRT dosimetry.Approach. We retrospectively analyzed post-treatment PET/CT images of 20 HCC patients after90Y SIRT. Predicted tumor response from SIRT was quantified based on personalized post-therapy dosimetry and corresponding response models. Predicted non-responding tumor regions were then targeted with a hypothetical SBRT boost plan using a framework for selecting eligible tumors and tumor subregions. SBRT boost plans were compared to SBRT plans targeting all tumors irrespective of SIRT dose with the same prescription and organ-at-risk (OAR) objectives. The potential benefit of SIRT followed by a SBRT was evaluated based on OAR dose and predicted toxicity compared to the independent SBRT treatment.Main results. Following SIRT, 14/20 patients had at least one predicted non-responding tumor considered eligible for a SBRT boost. When comparing SBRT plans, 10/14 (71%) SBRTboostand 12/20 (60%) SBRTaloneplans were within OAR dose constraints. For three patients, SBRTboostplans were within OAR constraints while SBRTaloneplans were not. Across the 14 eligible patients, SBRTboostplans had significantly less dose to the healthy liver (decrease in mean dose was on average ± standard deviation, 2.09 Gy ± 1.99 Gy, ) and reduced the overall targeted PTV volume (39% ± 21%) compared with SBRTalone.Significance. A clinical methodology for treating HCC using a synergized SIRT and SBRT approach is presented, demonstrating that it could reduce normal tissue toxicity risk in a majority of our retrospectively evaluated cases. Selectively targeting SIRT underdosed HCC lesions, or lesion subvolumes, with SBRT could improve tumor control and patient outcomes post-SIRT and allow SIRT to function as a target debulking tool for cases when SBRT is not independently feasible.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos de Viabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
PURPOSE: We hypothesized that optimizing the utility of stereotactic body radiotherapy (SBRT) based on the individual patient's probability for tumor control and risk of liver injury would decrease toxicity without sacrificing local control in patients with impaired liver function or tumors not amenable to thermal ablation. PATIENTS AND METHODS: Patients with Child-Pugh (CP) A to B7 liver function with aggregate tumor size >3.5 cm, or CP ≥ B8 with any size tumor were prospectively enrolled on an Institutional Review Board-approved phase II clinical trial to undergo SBRT with baseline and midtreatment dose optimization using a quantitative, individualized utility-based analysis. Primary endpoints were change in CP score of ≥2 points within 6 months and local control. Protocol-treated patients were compared with patients receiving conventional SBRT at another cancer center using overlap weighting. RESULTS: A total of 56 patients with 80 treated tumors were analyzed with a median follow-up of 11.2 months. Two-year cumulative incidence of local progression was 6.4% [95% confidence interval (CI, 2.4-13.4)]. Twenty-one percent of patients experienced treatment-related toxicity within 6 months, which is similar to the rate for SBRT in patients with CP A liver function. An analysis using overlap weighting revealed similar local control [HR, 0.69; 95% CI (0.25-1.91); P = 0.48] and decreased toxicity [OR, 0.26; 95% CI (0.07-0.99); P = 0.048] compared with conventional SBRT. CONCLUSIONS: Treatment of individuals with impaired liver function or tumors not amenable to thermal ablation with a treatment paradigm designed to optimize utility may decrease treatment-related toxicity while maintaining tumor control.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Dosagem Radioterapêutica , Radiocirurgia/efeitos adversos , Estudos RetrospectivosRESUMO
PURPOSE: Liver-directed radiation therapy is an effective treatment for hepatocellular carcinoma (HCC), but metachronous lesions develop outside the irradiated field in >50% of patients. We hypothesized that irradiation of these new lesions would produce an outcome like that of patients receiving a first course (C1) of treatment. METHODS AND MATERIALS: We included patients with HCC who received a second course (C2) of radiation therapy >1 month after C1. Toxicity was defined as Child-Pugh score increase ≥2 within 6 months posttreatment (binary model) and as the change in albumin-bilirubin during the year after treatment (longitudinal model). Overall survival (OS) and local failure (LF) were captured at the patient and lesion level, respectively; both were summarized with Kaplan-Meier estimates. Predictors of toxicity and OS were assessed using generalized linear mixed and Cox regression models, respectively. RESULTS: Of 340 patients with HCC, 47 underwent irradiation for metachronous HCC, receiving similar prescription dose in C1/C2. Median follow-up was 17 months after C1 and 15 months after C2. Twenty-two percent of patients experienced toxicity after C1, and 25% experienced toxicity after C2. Worse baseline albumin-bilirubin predicted toxicity in both binary (odds ratio, 2.40; 95% CI, 1.46-3.94; P = .0005) and longitudinal models (P < .005). Two-year LF rate was 11.2% after C1 and 8.3% after C2; tumor dose (hazard ratio [HR], 0.982; 95% CI, 0.969-0.995; P = .007) and tumor size (HR, 1.135; 95% CI, 1.068-1.206; P < .005) predicted LF. Two-year OS was 46.0% after C1 and 42.6% after C2; tumor dose (HR, 0.986; 95% CI, 0.979-0.992; P < .005) and tumor size (HR, 1.049; 95% CI, 1.010-1.088; P = .0124) predicted OS. Reirradiation was not associated with toxicity (P > .7), LF (P = .79), or OS (P = .39). CONCLUSIONS: In this largest series in the Western hemisphere, we demonstrate that irradiation for metachronous HCC offers low rates of LF with acceptable toxicity and OS like that of patients receiving a C1. These findings support judicious selection of patients for reirradiation in metachronous HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Albuminas , Bilirrubina , Estudos RetrospectivosRESUMO
BACKGROUND: The goal of limb-sparing surgery for a soft tissue sarcoma of the extremity is to remove all malignant cells while preserving limb function. After initial surgery, microscopic residual disease in the tumor bed will cause a local recurrence in approximately 33% of patients with sarcoma. To help identify these patients, the authors developed an in vivo imaging system to investigate the suitability of molecular imaging for intraoperative visualization. METHODS: A primary mouse model of soft tissue sarcoma and a wide field-of-view imaging device were used to investigate a series of exogenously administered, near-infrared (NIR) fluorescent probes activated by cathepsin proteases for real-time intraoperative imaging. RESULTS: The authors demonstrated that exogenously administered cathepsin-activated probes can be used for image-guided surgery to identify microscopic residual NIR fluorescence in the tumor beds of mice. The presence of residual NIR fluorescence was correlated with microscopic residual sarcoma and local recurrence. The removal of residual NIR fluorescence improved local control. CONCLUSIONS: The authors concluded that their technique has the potential to be used for intraoperative image-guided surgery to identify microscopic residual disease in patients with cancer.
Assuntos
Neoplasia Residual/cirurgia , Sarcoma/cirurgia , Neoplasias de Tecidos Moles/cirurgia , Animais , Corantes Fluorescentes , Raios Infravermelhos , Período Intraoperatório , Camundongos , Sarcoma Experimental/cirurgia , Cirurgia Assistida por ComputadorRESUMO
Despite contemporary surgery, image-guided radiotherapy, and chemotherapy, glioblastoma multiforme (GBM) persists or relapses in nearly all patients, and tumors almost always recur locally. Management of recurrent GBM is variable, but approaches include best supportive care, reoperation, reirradiation, and/or systemic therapy. Promising novel therapies include antiangiogenic agents and stereotactic radiosurgery, which have cytotoxic effects on tumor microvasculature. Emerging data suggest the safety and efficacy of bevacizumab and radiosurgery either alone or in combination. This report presents the case of a man with locally recurrent GBM treated with stereotactic radiosurgery and concurrent bevacizumab, and reviews the preclinical and clinical data supporting this approach.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Recidiva Local de Neoplasia/terapia , Radiocirurgia , Bevacizumab , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Terapia Combinada , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/cirurgia , Resultado do TratamentoRESUMO
Benign papillary lesions of the breast include papilloma and papillomatosis. A retrospective analysis of patients with a papillary breast lesion diagnosed between October 1992 and December 2009 was performed. Patients were excluded if they had a previous or concurrent diagnosis of invasive or in situ cancer or less than 6 months of follow-up. The Kaplan-Meier method was used to determine the risk of developing subsequent malignancy. The log rank test was used to compare groups of patients. Median follow-up for the 167 patients included in the study was 4.6 years. Fifty-one patients had a papillary lesion with atypia and 116 patients had a papillary lesion without atypia. Patients with a papillary lesion with atypia were more likely to develop invasive or in situ breast cancer with a 5 year risk of 13.0% versus 4.6% in patients with no atypia (p = 0.03).