Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 34(10): 2232-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082229

RESUMO

OBJECTIVE: Hereditary hemorrhagic telangiectasia is a genetic disorder characterized by visceral and mucocutaneous arteriovenous malformations (AVMs). Clinically indistinguishable hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 are caused by mutations in ENG and ALK1, respectively. In this study, we have compared the development of visceral and mucocutaneous AVMs in adult stages between Eng- and Alk1-inducible knockout (iKO) models. APPROACH AND RESULTS: Eng or Alk1 were deleted from either vascular endothelial cells (ECs) or smooth muscle cells in adult stages using Scl-CreER and Myh11-CreER lines, respectively. Latex perfusion and intravital spectral imaging in a dorsal skinfold window chamber system were used to visualize remodeling vasculature during AVM formation. Global Eng deletion resulted in lethality with visceral AVMs and wound-induced skin AVMs. Deletion of Alk1 or Eng in ECs, but not in smooth muscle cells, resulted in wound-induced skin AVMs. Visceral AVMs were observed in EC-specific Alk1-iKO but not in Eng-iKO. Intravital spectral imaging revealed that Eng-iKO model exhibited more dynamic processes for AVM development when compared with Alk1-iKO model. CONCLUSIONS: Both Alk1- and Eng-deficient models require a secondary insult, such as wounding, and ECs are the primary cell type responsible for the pathogenesis. However, Alk1 but not Eng deletion in ECs results in visceral AVMs.


Assuntos
Malformações Arteriovenosas/patologia , Telangiectasia Hemorrágica Hereditária/patologia , Receptores de Ativinas Tipo I/deficiência , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Animais , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endoglina , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Fatores de Tempo , Cicatrização
2.
STAR Protoc ; 3(4): 101919, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595908

RESUMO

Here, we present a protocol using MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) platform to investigate changes of the protein synthesis machinery in U87MG glioblastoma cells in response to the rocaglate silvestrol. This protocol describes steps to perform SILAC (stable isotope labeling by amino acids in cell culture), ribosome density fractionation, protein isolation, and mass spectrometry analysis. This approach can be applied to study any adaptive remodeling of protein synthesis machineries. For complete details on the use and execution of this protocol, please refer to Ho et al. (2021).1.


Assuntos
Glioblastoma , Humanos , Proteômica/métodos , Proteínas/química , Aminoácidos/metabolismo , Espectrometria de Massas/métodos
3.
ACS Omega ; 6(38): 24432-24443, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604625

RESUMO

eIF4A1 is an ATP-dependent RNA helicase whose overexpression and activity have been tightly linked to oncogenesis in a number of malignancies. An understanding of the complex kinetics and conformational changes of this translational enzyme is necessary to map out all targetable binding sites and develop novel, chemically tractable inhibitors. We herein present a comprehensive quantitative analysis of eIF4A1 conformational changes using protein-ligand docking, homology modeling, and extended molecular dynamics simulations. Through this, we report the discovery of a novel, biochemically active phenyl-piperazine pharmacophore, which is predicted to target the ATP-binding site and may serve as the starting point for medicinal chemistry optimization efforts. This is the first such report of an ATP-competitive inhibitor for eiF4A1, which is predicted to bind in the nucleotide cleft. Our novel interdisciplinary pipeline serves as a framework for future drug discovery efforts for targeting eiF4A1 and other proteins with complex kinetics.

4.
Cell Rep ; 37(2): 109806, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644561

RESUMO

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Animais , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Fator de Iniciação 4A em Eucariotos/efeitos dos fármacos , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Cultura Primária de Células , Biossíntese de Proteínas/fisiologia , Proteômica/métodos , Ribossomos/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Triterpenos/farmacologia
5.
J Med Chem ; 64(21): 15727-15746, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34676755

RESUMO

Increased protein synthesis is a requirement for malignant growth, and as a result, translation has become a pharmaceutical target for cancer. The initiation of cap-dependent translation is enzymatically driven by the eukaryotic initiation factor (eIF)4A, an ATP-powered DEAD-box RNA-helicase that unwinds the messenger RNA secondary structure upstream of the start codon, enabling translation of downstream genes. A screen for inhibitors of eIF4A ATPase activity produced an intriguing hit that, surprisingly, was not ATP-competitive. A medicinal chemistry campaign produced the novel eIF4A inhibitor 28, which decreased BJAB Burkitt lymphoma cell viability. Biochemical and cellular studies, molecular docking, and functional assays uncovered that 28 is an RNA-competitive, ATP-uncompetitive inhibitor that engages a novel pocket in the RNA groove of eIF4A and inhibits unwinding activity by interfering with proper RNA binding and suppressing ATP hydrolysis. Inhibition of eIF4A through this unique mechanism may offer new strategies for targeting this promising intersection point of many oncogenic pathways.


Assuntos
Descoberta de Drogas , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Humanos , Conformação de Ácido Nucleico , RNA Mensageiro/química
6.
Oncotarget ; 9(85): 35515-35516, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30473746
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA