Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1938): 20201339, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143577

RESUMO

Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10-86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.


Assuntos
Migração Animal , Passeriformes , Animais , Evolução Biológica , Europa (Continente) , Isolamento Reprodutivo , Aves Canoras
2.
Evol Lett ; 7(6): 401-412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045725

RESUMO

Structural variants (SVs) are a major source of genetic variation; and descriptions in natural populations and connections with phenotypic traits are beginning to accumulate in the literature. We integrated advances in genomic sequencing and animal tracking to begin filling this knowledge gap in the Eurasian blackcap. Specifically, we (a) characterized the genome-wide distribution, frequency, and overall fitness effects of SVs using haplotype-resolved assemblies for 79 birds, and (b) used these SVs to study the genetics of seasonal migration. We detected >15 K SVs. Many SVs overlapped repetitive regions and exhibited evidence of purifying selection suggesting they have overall deleterious effects on fitness. We used estimates of genomic differentiation to identify SVs exhibiting evidence of selection in blackcaps with different migratory strategies. Insertions and deletions dominated the SVs we identified and were associated with genes that are either directly (e.g., regulatory motifs that maintain circadian rhythms) or indirectly (e.g., through immune response) related to migration. We also broke migration down into individual traits (direction, distance, and timing) using existing tracking data and tested if genetic variation at the SVs we identified could account for phenotypic variation at these traits. This was only the case for 1 trait-direction-and 1 specific SV (a deletion on chromosome 27) accounted for much of this variation. Our results highlight the evolutionary importance of SVs in natural populations and provide insight into the genetic basis of seasonal migration.

3.
Sci Rep ; 10(1): 7220, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350286

RESUMO

Migratory species display a range of migration patterns between irruptive (facultative) to regular (obligate), as a response to different predictability of resources. In the Arctic, snow directly influences resource availability. The causes and consequences of different migration patterns of migratory species as a response to the snow conditions remains however unexplored. Birds migrating to the Arctic are expected to follow the spring snowmelt to optimise their arrival time and select for snow-free areas to maximise prey encounter en-route. Based on large-scale movement data, we compared the migration patterns of three top predator species of the tundra in relation to the spatio-temporal dynamics of snow cover. The snowy owl, an irruptive migrant, the rough-legged buzzard, with an intermediary migration pattern, and the peregrine falcon as a regular migrant, all followed, as expected, the spring snowmelt during their migrations. However, the owl stayed ahead, the buzzard stayed on, and the falcon stayed behind the spatio-temporal peak in snowmelt. Although none of the species avoided snow-covered areas, they presumably used snow presence as a cue to time their arrival at their breeding grounds. We show the importance of environmental cues for species with different migration patterns.


Assuntos
Migração Animal/fisiologia , Falconiformes/fisiologia , Modelos Biológicos , Estações do Ano , Animais , Regiões Árticas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA