Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genome Res ; 29(8): 1262-1276, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31249065

RESUMO

Organisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although the circadian cycle is implicated in aging, it is unknown whether natural variation in its function contributes to differences in lifespan between populations and whether the circadian clock of specific tissues is key for longevity. We have sequenced the genomes of Drosophila melanogaster strains with exceptional longevity that were obtained via multiple rounds of selection from a parental strain. Comparison of genomic, transcriptomic, and proteomic data revealed that changes in gene expression due to intergenic polymorphisms are associated with longevity and preservation of skeletal muscle function with aging in these strains. Analysis of transcription factors differentially modulated in long-lived versus parental strains indicates a possible role of circadian clock core components. Specifically, there is higher period and timeless and lower cycle expression in the muscle of strains with delayed aging compared to the parental strain. These changes in the levels of circadian clock transcription factors lead to changes in the muscle circadian transcriptome, which includes genes involved in metabolism, proteolysis, and xenobiotic detoxification. Moreover, a skeletal muscle-specific increase in timeless expression extends lifespan and recapitulates some of the transcriptional and circadian changes that differentiate the long-lived from the parental strains. Altogether, these findings indicate that the muscle circadian clock is important for longevity and that circadian gene variants contribute to the evolutionary divergence in longevity across populations.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de Inseto , Longevidade/genética , Músculo Esquelético/metabolismo , Proteínas Circadianas Period/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Evolução Biológica , Ritmo Circadiano/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Genética Populacional , Genômica , Músculo Esquelético/crescimento & desenvolvimento , Proteínas Circadianas Period/metabolismo , Polimorfismo Genético , Transcriptoma , Sequenciamento Completo do Genoma
2.
Cell Rep Methods ; 4(10): 100875, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39383859

RESUMO

Loss of proteostasis is a hallmark of aging that underlies many age-related diseases. Different cell compartments experience distinctive challenges in maintaining protein quality control, but how aging regulates subcellular proteostasis remains underexplored. Here, by targeting the misfolding-prone FlucDM luciferase to the cytoplasm, mitochondria, and nucleus, we established transgenic sensors to examine subcellular proteostasis in Drosophila. Analysis of detergent-insoluble and -soluble levels of compartment-targeted FlucDM variants indicates that thermal stress, cold shock, and pro-longevity inter-organ signaling differentially affect subcellular proteostasis during aging. Moreover, aggregation-prone proteins that cause different neurodegenerative diseases induce a diverse range of outcomes on FlucDM insolubility, suggesting that subcellular proteostasis is impaired in a disease-specific manner. Further analyses with FlucDM and mass spectrometry indicate that pathogenic tauV337M produces an unexpectedly complex regulation of solubility for different FlucDM variants and protein subsets. Altogether, compartment-targeted FlucDM sensors pinpoint a diverse modulation of subcellular proteostasis by aging regulators.


Assuntos
Envelhecimento , Proteostase , Animais , Envelhecimento/metabolismo , Agregados Proteicos , Animais Geneticamente Modificados , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Luciferases/genética , Luciferases/metabolismo , Drosophila
3.
Cell Rep ; 42(1): 111970, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640359

RESUMO

Protein quality control is important for healthy aging and is dysregulated in age-related diseases. The autophagy-lysosome and ubiquitin-proteasome are key for proteostasis, but it remains largely unknown whether other proteolytic systems also contribute to maintain proteostasis during aging. Here, we find that expression of proteolytic enzymes (proteases/peptidases) distinct from the autophagy-lysosome and ubiquitin-proteasome systems declines during skeletal muscle aging in Drosophila. Age-dependent protease downregulation undermines proteostasis, as demonstrated by the increase in detergent-insoluble poly-ubiquitinated proteins and pathogenic huntingtin-polyQ levels in response to protease knockdown. Computational analyses identify the transcription factor Ptx1 (homologous to human PITX1/2/3) as a regulator of protease expression. Consistent with this model, Ptx1 protein levels increase with aging, and Ptx1 RNAi counteracts the age-associated downregulation of protease expression. Moreover, Ptx1 RNAi improves muscle protein quality control in a protease-dependent manner and extends lifespan. These findings indicate that proteases and their transcriptional modulator Ptx1 ensure proteostasis during aging.


Assuntos
Complexo de Endopeptidases do Proteassoma , Fatores de Transcrição , Humanos , Envelhecimento/metabolismo , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo , Animais , Drosophila
4.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963875

RESUMO

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Assuntos
Peroxissomos , Ubiquitina , Humanos , Ubiquitinação , Ubiquitina/metabolismo , Transporte Proteico/fisiologia , Peroxissomos/metabolismo , Membranas Intracelulares/metabolismo
5.
Aging Cell ; 21(5): e13603, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349763

RESUMO

Protein quality control ensures the degradation of damaged and misfolded proteins. Derangement of proteostasis is a primary cause of aging and age-associated diseases. The ubiquitin-proteasome and autophagy-lysosome play key roles in proteostasis but, in addition to these systems, the human genome encodes for ~600 proteases, also known as peptidases. Here, we examine the role of proteases in aging and age-related neurodegeneration. Proteases are present across cell compartments, including the extracellular space, and their substrates encompass cellular constituents, proteins with signaling functions, and misfolded proteins. Proteolytic processing by proteases can lead to changes in the activity and localization of substrates or to their degradation. Proteases cooperate with the autophagy-lysosome and ubiquitin-proteasome systems but also have independent proteolytic roles that impact all hallmarks of cellular aging. Specifically, proteases regulate mitochondrial function, DNA damage repair, cellular senescence, nutrient sensing, stem cell properties and regeneration, protein quality control and stress responses, and intercellular signaling. The capacity of proteases to regulate cellular functions translates into important roles in preserving tissue homeostasis during aging. Consequently, proteases influence the onset and progression of age-related pathologies and are important determinants of health span. Specifically, we examine how certain proteases promote the progression of Alzheimer's, Huntington's, and/or Parkinson's disease whereas other proteases protect from neurodegeneration. Mechanistically, cleavage by proteases can lead to the degradation of a pathogenic protein and hence impede disease pathogenesis. Alternatively, proteases can generate substrate byproducts with increased toxicity, which promote disease progression. Altogether, these studies indicate the importance of proteases in aging and age-related neurodegeneration.


Assuntos
Doenças Neurodegenerativas , Complexo de Endopeptidases do Proteassoma , Envelhecimento/metabolismo , Endopeptidases/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Ubiquitina/metabolismo
6.
STAR Protoc ; 2(3): 100628, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34235493

RESUMO

Defects in protein quality control are the underlying cause of age-related diseases. The western blot analysis of detergent-soluble and insoluble protein fractions has proven useful in identifying interventions that regulate proteostasis. Here, we describe the protocol for such analyses in Drosophila tissues, mouse skeletal muscle, human organoids, and HEK293 cells. We describe key adaptations of this protocol and provide key information that will help modify this protocol for future studies in other tissues and disease models. For complete details on the use and execution of this protocol, please refer to Rai et al. (2021) and Hunt el al. (2021).


Assuntos
Western Blotting/métodos , Detergentes/química , Proteínas/metabolismo , Proteostase , Animais , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Camundongos , Proteínas/química , Solubilidade , Ubiquitinação
7.
Cell Metab ; 33(6): 1137-1154.e9, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773104

RESUMO

Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.


Assuntos
Envelhecimento/metabolismo , Amilases/fisiologia , Encéfalo/metabolismo , Proteínas de Drosophila/fisiologia , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Retina/metabolismo , Animais , Encéfalo/patologia , Linhagem Celular , Drosophila melanogaster , Humanos , Retina/patologia
8.
J Infus Nurs ; 40(2): 92-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28248808

RESUMO

Milrinone is a phosphodiesterase 3 inhibitor with both positive inotropic and vasodilator properties. Administered as a continuous infusion, milrinone is indicated for the short-term treatment of patients with acute decompensated heart failure. Despite limited data supporting long-term milrinone therapy in adults with congestive heart failure, children managed as outpatients may benefit from continuous milrinone as a treatment for cardiac dysfunction, as a destination therapy for cardiac transplant, or as palliative therapy for cardiomyopathy. The aim of this article is to review the medical literature and describe a home infusion company's experience with pediatric outpatient milrinone therapy.


Assuntos
Cardiotônicos/uso terapêutico , Terapia por Infusões no Domicílio/métodos , Infusões Intravenosas , Milrinona/uso terapêutico , Adolescente , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Transplante de Coração , Hemodinâmica/efeitos dos fármacos , Terapia por Infusões no Domicílio/enfermagem , Assistência Domiciliar , Humanos , Lactente , Masculino , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA