Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2300137120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036998

RESUMO

Heme-containing integral membrane proteins are at the heart of many bioenergetic complexes and electron transport chains. The importance of these electron relay hubs across biology has inspired the design of de novo proteins that recreate their core features within robust, versatile, and tractable protein folds. To this end, we report here the computational design and in-cell production of a minimal diheme membrane cytochrome which successfully integrates into the cellular membrane of live bacteria. This synthetic construct emulates a four-helix bundle found in modern respiratory complexes but has no sequence homology to any polypeptide sequence found in nature. The two b-type hemes, which appear to be recruited from the endogenous heme pool, have distinct split redox potentials with values close to those of natural membrane-spanning cytochromes. The purified protein can engage in rapid biomimetic electron transport with small molecules, with other redox proteins, and with biologically relevant diffusive electron carriers. We thus report an artificial membrane metalloprotein with the potential to serve as a functional electron transfer module in both synthetic protocells and living systems.


Assuntos
Citocromos , Metaloproteínas , Citocromos/metabolismo , Oxirredução , Transporte de Elétrons , Metaloproteínas/metabolismo , Heme/metabolismo
2.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073401

RESUMO

Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90 % archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99 % of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.


Assuntos
Archaea , Bactérias , Microbiota , Filogenia , Poríferos , Poríferos/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Animais , Oceano Atlântico , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Biodiversidade
3.
Biochem Soc Trans ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958574

RESUMO

The major energy-producing reactions of biochemistry occur at biological membranes. Computational protein design now provides the opportunity to elucidate the underlying principles of these processes and to construct bioenergetic pathways on our own terms. Here, we review recent achievements in this endeavour of 'synthetic bioenergetics', with a particular focus on new enabling tools that facilitate the computational design of biocompatible de novo integral membrane proteins. We use recent examples to showcase some of the key computational approaches in current use and highlight that the overall philosophy of 'surface-swapping' - the replacement of solvent-facing residues with amino acids bearing lipid-soluble hydrophobic sidechains - is a promising avenue in membrane protein design. We conclude by highlighting outstanding design challenges and the emerging role of AI in sequence design and structure ideation.

4.
Environ Microbiol ; 25(2): 315-330, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36397254

RESUMO

Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+ -coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find that CbSITL from Coccolithus braarudii is transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement of C. braarudii and other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.


Assuntos
Diatomáceas , Haptófitas , Silício/metabolismo , Fitoplâncton/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Calcificação Fisiológica , Haptófitas/genética , Haptófitas/metabolismo
6.
Protein Expr Purif ; 190: 106011, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737041

RESUMO

Many opportunistic bacteria that infect the upper respiratory tract decorate their cell surface with phosphorylcholine to support colonisation and outgrowth. These surface modifications require the active import of choline from the host environment, a process thought to be mediated by a family of dedicated integral membrane proteins that act as choline permeases. Here, we present the expression and purification of the archetype of these choline transporters, LicB from Haemophilus influenzae. We show that LicB can be recombinantly produced in Escherichia coli and purified to homogeneity in a stable, folded state using the detergent n-dodecyl-ß-d-maltopyranoside. Equilibrium binding studies with the fluorescent ligand dansylcholine suggest that LicB is selective towards choline, with reduced affinity for acetylcholine and no apparent activity towards other small molecules including glycine, carnitine and betaine. We also identify a conserved sequence motif within the LicB family and show that mutations within this motif compromise protein structure and function. Our results are consistent with previous observations that LicB is a specific high-affinity choline transporter, and provide an experimental platform for further studies of this permease family.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Haemophilus influenzae/genética , Proteínas de Membrana Transportadoras , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Haemophilus influenzae/enzimologia , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
Mar Drugs ; 19(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670308

RESUMO

To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.


Assuntos
Antibacterianos/isolamento & purificação , Microbiota , Micromonospora/isolamento & purificação , Poríferos/microbiologia , Animais , Antibacterianos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Oceano Atlântico , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Sequenciamento Completo do Genoma
8.
Biochem Soc Trans ; 47(5): 1233-1245, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31671181

RESUMO

The construction of artificial membrane proteins from first principles is of fundamental interest and holds considerable promise for new biotechnologies. This review considers the potential advantages of adopting a strictly minimalist approach to the process of membrane protein design. As well as the practical benefits of miniaturisation and simplicity for understanding sequence-structure-function relationships, minimalism should also support the abstract conceptualisation of membrane proteins as modular components for synthetic biology. These ideas are illustrated with selected examples that focus upon α-helical membrane proteins, and which demonstrate how such minimalist membrane proteins might be integrated into living biosystems.


Assuntos
Proteínas de Membrana/química , Biotecnologia , Proteínas de Membrana/metabolismo , Relação Estrutura-Atividade , Biologia Sintética
9.
Yeast ; 34(6): 239-251, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28160314

RESUMO

The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.


Assuntos
Acetiltransferases/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetiltransferases/isolamento & purificação , Clonagem Molecular , Cromatografia Gasosa-Espectrometria de Massas , Proteínas/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
10.
Yeast ; 31(12): 463-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25308280

RESUMO

Fatty acid ethyl esters are secondary metabolites that are produced during microbial fermentation, in fruiting plants and in higher organisms during ethanol stress. In particular, volatile medium-chain fatty acid ethyl esters are important flavour compounds that impart desirable fruit aromas to fermented beverages, including beer and wine. The biochemical synthesis of medium-chain fatty acid ethyl esters is poorly understood but likely involves acyl-CoA:ethanol O-acyltransferases. Here, we characterize the enzyme ethanol hexanoyl transferase 1 (Eht1) from the brewer's yeast Saccharomyces cerevisiae. Full-length Eht1 was successfully overexpressed from a recombinant yeast plasmid and purified at the milligram scale after detergent solubilization of sedimenting membranes. Recombinant Eht1 was functional as an acyltransferase and, unexpectedly, was optimally active toward octanoyl-CoA, with k(cat) = 0.28 ± 0.02/s and K(M) = 1.9 ± 0.6 µm. Eht1 was also revealed to be active as a thioesterase but was not able to hydrolyse p-nitrophenyl acyl esters, in contrast to the findings of a previous study. Low-resolution structural data and site-directed mutagenesis provide experimental support for a predicted α/ß-hydrolase domain featuring a Ser-Asp-His catalytic triad. The S. cerevisiae gene YBR177C/EHT1 should thus be reannotated as coding for an octanoyl-CoA:ethanol acyltransferase that can also function as a thioesterase.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Tioléster Hidrolases/metabolismo , Análise Mutacional de DNA , Expressão Gênica , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
11.
Protein Expr Purif ; 101: 68-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907408

RESUMO

The aromatic acid:H(+) symporter family of integral membrane proteins play an important role in the microbial metabolism of aromatic compounds. Here, we show that the 4-hydroxybenzoate transporter from Acinetobacter sp. ADP1, PcaK, can be successfully overexpressed in Escherichia coli and purified by affinity chromatography. Affinity-purified PcaK is a stable, monodisperse homotrimer in the detergent n-dodecyl-ß-d-maltopyranoside supplemented with cholesteryl hemisuccinate. The purified protein has α-helical secondary structure and can be reconstituted to a functional state in synthetic proteoliposomes. Asymmetric substrate transport was observed when proteoliposomes were energized by applying an electrochemical proton gradient (Δµâ€¾H(+)) or a membrane potential (ΔΨ) but not by ΔpH alone. PcaK was selective in transporting 4-hydroxybenzoate and 3,4-dihydroxybenzoate over closely related compounds, confirming previous reports on substrate specificity. However, PcaK also showed an unexpected preference for transporting 2-hydroxybenzoates. These results provide the basis for further detailed studies of the structure and function of this family of transporters.


Assuntos
Acinetobacter/enzimologia , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Parabenos/metabolismo , Simportadores/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Ésteres do Colesterol/química , Cromatografia de Afinidade , Farmacorresistência Bacteriana/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibenzoatos/metabolismo , Maltose/análogos & derivados , Maltose/química , Estrutura Secundária de Proteína , Proteolipídeos/química , Proteolipídeos/metabolismo , Ácido Salicílico/metabolismo , Especificidade por Substrato , Simportadores/biossíntese , Simportadores/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(34): 14133-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21831834

RESUMO

Defining the structural features of a transition state is important in understanding a folding reaction. Here, we use Φ-value and double mutant analyses to probe the folding transition state of the membrane protein bacteriorhodopsin. We focus on the final C-terminal helix, helix G, of this seven transmembrane helical protein. Φ-values could be derived for 12 amino acid residues in helix G, most of which have low or intermediate values, suggesting that native structure is disrupted at these amino acid positions in the transition state. Notably, a cluster of residues between E204 and M209 all have Φ-values close to zero. Disruption of helix G is further confirmed by a low Φ-value of 0.2 between residues T170 on helix F and S226 on helix G, suggesting the absence of a native hydrogen bond between helices F and G. Φ-values for paired mutations involved in four interhelical hydrogen bonds revealed that all but one of these bonds is absent in the transition state. The unstructured helix G contrasts with Φ-values along helix B that are generally high, implying native structure in helix B in the transition state. Thus helix B seems to constitute part of a stable folding nucleus while the consolidation of helix G is a relatively late folding event. Polarization of secondary structure correlates with sequence position, with a structured helix B near the N terminus contrasting with an unstructured C-terminal helix G.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Dobramento de Proteína , Alanina/genética , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese/genética , Mutação/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína
13.
Protein Sci ; 33(8): e5113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980168

RESUMO

Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry. Here, we use a set of de novo designed mono-heme and di-heme soluble and membrane proteins to delineate the contributions of electrostatic micro-environments and dielectric properties of the surrounding protein medium on the inter-heme redox cooperativity that we have previously reported. Experimentally, we find that the two heme sites in both the water-soluble and membrane constructs have broadly equivalent redox potentials in isolation, in agreement with Poisson-Boltzmann Continuum Electrostatics calculations. BioDC, a Python program for the estimation of electron transfer energetics and kinetics within multiheme cytochromes, also predicts equivalent heme sites, and reports that burial within the low dielectric environment of the membrane strengthens heme-heme electrostatic coupling. We conclude that redox cooperativity in our diheme cytochromes is largely driven by heme electrostatic coupling and confirm that this effect is greatly strengthened by burial in the membrane. These results demonstrate that while our de novo proteins present minimalist, new-to-nature constructs, they enable the dissection and microscopic examination of processes fundamental to the function of vital, yet complex, bioenergetic assemblies.


Assuntos
Heme , Oxirredução , Heme/química , Heme/metabolismo , Solubilidade , Água/química , Água/metabolismo , Citocromos/química , Citocromos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Eletricidade Estática , Engenharia de Proteínas
14.
Biochim Biophys Acta Biomembr ; 1865(1): 184056, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191629

RESUMO

Diatoms are an important group of algae that can produce intricate silicified cell walls (frustules). The complex process of silicification involves a set of enigmatic integral membrane proteins that are thought to actively transport the soluble precursor of biosilica, dissolved silicic acid. Full-length silicic acid transporters are found widely across the diatoms while homologous shorter proteins have now been identified in a range of other organisms. It has been suggested that modern silicic acid transporters arose from the union of such partial sequences. Here, we present a computational study of the silicic acid transporters and related transporter-like sequences to help understand the structure, function and evolution of this class of membrane protein. The AlphaFold software predicts that all of the protein sequences studied here share a common fold in the membrane domain which is entirely different from the predicted folds of non-homologous silicic acid transporters from plants. Substrate docking reveals how conserved polar residues could interact with silicic acid at a central solvent-accessible binding site, consistent with an alternating access mechanism of transport. The structural conservation between these proteins supports a model where modern silicon transporters evolved from smaller ancestral proteins by gene fusion.


Assuntos
Diatomáceas , Ácido Silícico , Ácido Silícico/química , Ácido Silícico/metabolismo , Diatomáceas/genética , Diatomáceas/química , Diatomáceas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Silício/química , Proteínas de Membrana/metabolismo , Simulação por Computador
15.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166955

RESUMO

The deep sea is known to host novel bacteria with the potential to produce a diverse array of undiscovered natural products. Thus, understanding these bacteria is of broad interest in ecology and could also underpin applied drug discovery, specifically in the area of antimicrobials. Here, we isolate a new strain of Streptomyces from the tissue of the deep-sea sponge Polymastia corticata collected at a depth of 1869 m from the Gramberg Seamount in the Atlantic Ocean. This strain, which was given the initial designation A15ISP2-DRY2T, has a genome size of 9.29 Mb with a G+C content of 70.83 mol%. Phylogenomics determined that A15ISP2-DRY2T represents a novel species within the genus Streptomyces as part of the Streptomyces aurantiacus clade. The biosynthetic potential of A15ISP2-DRY2T was assessed relative to other members of the S. aurantiacus clade via comparative gene cluster family (GCF) analysis. This revealed a clear congruent relationship between phylogeny and GCF content. A15ISP2-DRY2T contains six unique GCFs absent elsewhere in the clade. Culture-based assays were used to demonstrate the antibacterial activity of A15ISP2-DRY2T against two drug-resistant human pathogens. Thus, we determine A15ISP2-DRY2T to be a novel bacterial species with considerable biosynthetic potential and propose the systematic name 'Streptomyces ortus' sp. nov.


Assuntos
Poríferos , Streptomyces , Streptomyces/química , Streptomyces/classificação , Streptomyces/isolamento & purificação , Água do Mar/microbiologia , Microbiologia da Água , Poríferos/microbiologia , Animais , Composição de Bases , Genoma Bacteriano
16.
Biochemistry ; 51(18): 3776-85, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22530967

RESUMO

The synthesis and manipulation of silicon materials on the nanoscale are core themes in nanotechnology research. Inspiration is increasingly being taken from the natural world because the biological mineralization of silicon results in precisely controlled, complex silica structures with dimensions from the millimeter to the nanometer. One fascinating example of silicon biomineralization occurs in the diatoms, unicellular algae that sheath themselves in an ornate silica-based cell wall. To harvest silicon from the environment, diatoms have developed a unique family of integral membrane proteins that bind to a soluble form of silica, silicic acid, and transport it across the cell membrane to the cell interior. These are the first proteins shown to directly interact with silicon, but the current understanding of these specific silicon transport proteins is limited by the lack of in vitro studies of structure and function. We report here the recombinant expression, purification, and reconstitution of a silicon transporter from the model diatom Thalassiosira pseudonana. After using GFP fusions to optimize expression and purification protocols, a His(10)-tagged construct was expressed in Saccharomyces cerevisiae, solubilized in the detergent Fos-choline-12, and purified by affinity chromatography. Size-exclusion chromatography and particle sizing by dynamic light scattering showed that the protein was purified as a homotetramer, although nonspecific oligomerization occurred at high protein concentrations. Circular dichroism measurements confirmed sequence-based predictions that silicon transporters are α-helical membrane proteins. Silicic acid transport could be established in reconstituted proteoliposomes, and silicon uptake was found to be dependent upon an applied sodium gradient. Transport data across different substrate concentrations were best fit to the sigmoidal Hill equation, with a K(0.5) of 19.4 ± 1.3 µM and a cooperativity coefficient of 1.6. Sodium binding was noncooperative with a K(m)(app) of 1.7 ± 1.0 mM, suggesting a transport silicic acid:Na(+) stoichiometry of 2:1. These results provide the basis for a full understanding of both silicon transport in the diatom and protein-silicon interactions in general.


Assuntos
Diatomáceas/química , Proteínas de Membrana Transportadoras/metabolismo , Ácido Silícico/metabolismo , Transporte Biológico , Parede Celular/química , Detergentes/farmacologia , Proteínas de Membrana Transportadoras/isolamento & purificação , Nanotecnologia/métodos , Proteolipídeos/efeitos dos fármacos , Proteolipídeos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Silício/metabolismo , Solubilidade
17.
Proc Natl Acad Sci U S A ; 106(3): 773-8, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19141633

RESUMO

Biology relies on the precise self-assembly of its molecular components. Generic principles of protein folding have emerged from extensive studies on small, water-soluble proteins, but it is unclear how these ideas are translated into more complex situations. In particular, the one-third of cellular proteins that reside in biological membranes will not fold like water-soluble proteins because membrane proteins need to expose, not hide, their hydrophobic surfaces. Here, we apply the powerful protein engineering method of Phi-value analysis to investigate the folding transition state of the alpha-helical membrane protein, bacteriorhodopsin, from a partially unfolded state. Our results imply that much of helix B of the seven-transmembrane helical protein is structured in the transition state with single-point alanine mutations in helix B giving Phi values >0.8. However, residues Y43 and T46 give lower Phi values of 0.3 and 0.5, respectively, suggesting a possible reduction in native structure in this region of the helix. Destabilizing mutations also increase the activation energy of folding, which is accompanied by an apparent movement of the transition state toward the partially unfolded state. This apparent transition state movement is most likely due to destabilization of the structured, unfolded state. These results contrast with the Hammond effect seen for several water-soluble proteins in which destabilizing mutations cause the transition state to move toward, and become closer in energy to, the folded state. We thus introduce a classic folding analysis method to membrane proteins, providing critical insight into the folding transition state.


Assuntos
Proteínas de Membrana/química , Dobramento de Proteína , Cinética , Desnaturação Proteica , Estrutura Secundária de Proteína , Dodecilsulfato de Sódio/química , Termodinâmica
18.
Methods Mol Biol ; 2397: 137-155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34813063

RESUMO

Tetrapyrrole cofactors such as heme and chlorophyll imprint their intrinsic reactivity and properties on a multitude of natural proteins and enzymes, and there is much interest in exploiting their functional and catalytic capabilities within minimal, de novo designed protein scaffolds. Here we describe how, using only natural biosynthetic and post-translational modification pathways, de novo designed soluble and hydrophobic proteins can be equipped with tetrapyrrole cofactors within living Escherichia coli cells. We provide strategies to achieve covalent and non-covalent heme incorporation within the de novo proteins and describe how the heme biosynthetic pathway can be co-opted to produce the light sensitive zinc protoporphyrin IX for loading into proteins in vivo. In addition, we describe the imaging of hydrophobic proteins and cofactor-rich protein droplets by electron and fluorescence microscopy, and how cofactors can be stripped from the de novo proteins to aid in vitro identification.


Assuntos
Proteínas/metabolismo , Clorofila , Escherichia coli/genética , Heme , Proteínas/genética , Tetrapirróis
19.
Sci Rep ; 11(1): 9698, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958622

RESUMO

The stable isotopic composition of diatom silica is used as a proxy for nutrient utilisation in natural waters. This approach provides essential insight into the current and historic links between biological production, carbon cycling and climate. However, estimates of isotopic fractionation during diatom silica production from both laboratory and field studies are variable, and the biochemical pathways responsible remain unknown. Here, we investigate silicon isotopic fractionation through a series of chemical precipitation experiments that are analogous to the first stages of intracellular silica formation within the diatom silicon deposition vesicle. The novelty of our experiment is the inclusion of the R5 peptide, which is closely related to a natural biomolecule known to play a role in diatom silicification. Our results suggest that the presence of R5 induces a systematic but non-significant difference in fractionation behaviour. It thus appears that silicon isotopic fractionation in vitro is largely driven by an early kinetic fractionation during rapid precipitation that correlates with the initial amount of dissolved silica in the system. Our findings raise the question of how environmental changes might impact silicon isotopic fractionation in diatoms, and whether frustule archives record information in addition to silica consumption in surface water.


Assuntos
Biomimética , Precipitação Química , Isótopos/química , Dióxido de Silício/química , Cinética
20.
Proc Natl Acad Sci U S A ; 104(48): 18970-5, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18025476

RESUMO

The analytical toolkit developed for investigations into water-soluble protein folding has yet to be applied in earnest to membrane proteins. A major problem is the difficulty in collecting kinetic data, which are crucial to understanding any reaction. Here, we combine kinetic and thermodynamic studies of the reversible unfolding of an alpha-helical membrane protein to provide a definitive value for the reaction free energy and a means to probe the transition state. Our analyses show that the major unfolding step in the SDS-induced denaturation of bacteriorhodopsin involves a reduction in alpha-helical structure and proceeds with a large free-energy change; both our equilibrium and kinetic measurements predict that the free energy of unfolding in the absence of denaturant is +20 kcal.mol(-1), with an associated m-value of 25 kcal.mol(-1). The rate of unfolding in the absence of denaturant, k(u)(H(2)O), is surprisingly very slow ( approximately 10(-15) s(-1)). The kinetics also give information on the transition state for this major unfolding step, with a value for beta (m(f)/[m(f) + m(u)]) of approximately 0.1, indicating that the transition state is close to the unfolded state. We thus present a basis for mapping the structural and energetic properties of membrane protein folding by mutagenesis and classical kinetics.


Assuntos
Desnaturação Proteica , Estrutura Secundária de Proteína , Bacteriorodopsinas/química , Ácidos Cólicos , Dicroísmo Circular , Detergentes , Dimiristoilfosfatidilcolina , Cinética , Micelas , Dodecilsulfato de Sódio , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA