Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochemistry ; 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436085

RESUMO

CRISPR gene editing and control systems continue to emerge and inspire novel research and clinical applications. Advances in CRISPR performance such as optimizing the duration of activity in cells, tissues, and organisms, as well as limiting off-target activities, have been extremely important for expanding the utility of CRISPR-based systems. By investigating the effects of various chemical modifications in guide RNAs (gRNAs) at defined positions and combinations, we find that 2'-O-methyl-3'-phosphonoacetate (MP) modifications can be substantially more effective than 2'-O-methyl-3'-phosphorothioate (MS) modifications at the 3' ends of single-guide RNAs (sgRNAs) to promote high editing yields, in some instances showing an order of magnitude higher editing yield in human cells. MP-modified 3' ends are especially effective at promoting the activity of guide RNAs cotransfected with Cas messenger RNA (mRNA), as the gRNA must persist in cells until the Cas protein is expressed. We demonstrate such an MP enhancement for sgRNAs cotransfected with a BE4 mRNA for cytidine base editing and also demonstrate that MP at the 3' ends of prime editing guide RNAs (pegRNAs) cotransfected with PE2 mRNA can promote maximal prime editing yields. In the presence of serum, sgRNAs with MP-modified 3' ends showed marked improvements in editing efficiency over sgRNAs with MS-modified 3' ends codelivered with Cas9 mRNA and showed more modest improvements at enhancing the activity of transfected ribonucleoprotein (RNP) complexes. Our results suggest that MP should be considered as a performance-enhancing modification for the 3' ends of synthetic gRNAs, especially in situations where the guide RNAs may be susceptible to exonuclease-mediated degradation.

2.
Nucleic Acids Res ; 46(2): 792-803, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29216382

RESUMO

CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Sítios de Ligação/genética , Humanos , Células K562 , Ácido Fosfonoacéticos/química , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo
3.
Mol Ther ; 26(10): 2431-2442, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30005866

RESUMO

Genome-editing technologies are currently being translated to the clinic. However, cellular effects of the editing machinery have yet to be fully elucidated. Here, we performed global microarray-based gene expression measurements on human CD34+ hematopoietic stem and progenitor cells that underwent editing. We probed effects of the entire editing process as well as each component individually, including electroporation, Cas9 (mRNA or protein) with chemically modified sgRNA, and AAV6 transduction. We identified differentially expressed genes relative to control treatments, which displayed enrichment for particular biological processes. All editing machinery components elicited immune, stress, and apoptotic responses. Cas9 mRNA invoked the greatest amount of transcriptional change, eliciting a distinct viral response and global transcriptional downregulation, particularly of metabolic and cell cycle processes. Electroporation also induced significant transcriptional change, with notable downregulation of metabolic processes. Surprisingly, AAV6 evoked no detectable viral response. We also found Cas9/sgRNA ribonucleoprotein treatment to be well tolerated, in spite of eliciting a DNA damage signature. Overall, this data establishes a benchmark for cellular tolerance of CRISPR/Cas9-AAV6-based genome editing, ensuring that the clinical protocol is as safe and efficient as possible.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Análise em Microsséries/métodos , Parvovirinae/genética , Antígenos CD34/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Dependovirus , Eletroporação , Edição de Genes/métodos , Regulação da Expressão Gênica/genética , Vetores Genéticos/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Células-Tronco/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 107(4): 1482-7, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080586

RESUMO

The use of DNA microarrays to identify nucleotide variation is almost 20 years old. A variety of improvements in probe design and experimental conditions have brought this technology to the point that single-nucleotide differences can be efficiently detected in unmixed samples, although developing reliable methods for detection of mixed sequences (e.g., heterozygotes) remains challenging. Surprisingly, a comprehensive study of the probe design parameters and experimental conditions that optimize discrimination of single-nucleotide polymorphisms (SNPs) has yet to be reported, so the limits of this technology remain uncertain. By targeting 24,549 SNPs that differ between two Saccharomyces cerevisiae strains, we studied the effect of SNPs on hybridization efficiency to DNA microarray probes of different lengths under different hybridization conditions. We found that the critical parameter for optimization of sequence discrimination is the relationship between probe melting temperature (T(m)) and the temperature at which the hybridization reaction is performed. This relationship can be exploited through the design of microarrays containing probes of equal T(m) by varying the length of probes. We demonstrate using such a microarray that we detect >90% homozygous SNPs and >80% heterozygous SNPs using the SNPScanner algorithm. The optimized design and experimental parameters determined in this study should guide DNA microarray designs for applications that require sequence discrimination such as mutation detection, genotyping of unmixed and mixed samples, and allele-specific gene expression. Moreover, designing microarray probes with optimized sensitivity to mismatches should increase the accuracy of standard microarray applications such as copy-number variation detection and gene expression analysis.


Assuntos
Sondas de DNA/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Algoritmos , Desnaturação de Ácido Nucleico , Saccharomyces cerevisiae/genética
5.
BMC Biotechnol ; 8: 69, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18783629

RESUMO

BACKGROUND: Determining the expression levels of microRNAs (miRNAs) is of great interest to researchers in many areas of biology, given the significant roles these molecules play in cellular regulation. Two common methods for measuring miRNAs in a total RNA sample are microarrays and quantitative RT-PCR (qPCR). To understand the results of studies that use these two different techniques to measure miRNAs, it is important to understand how well the results of these two analysis methods correlate. Since both methods use total RNA as a starting material, it is also critical to understand how measurement of miRNAs might be affected by the particular method of total RNA preparation used. RESULTS: We measured the expression of 470 human miRNAs in nine human tissues using Agilent microarrays, and compared these results to qPCR profiles of 61 miRNAs in the same tissues. Most expressed miRNAs (53/60) correlated well (R > 0.9) between the two methods. Using spiked-in synthetic miRNAs, we further examined the two miRNAs with the lowest correlations, and found the differences cannot be attributed to differential sensitivity of the two methods. We also tested three widely-used total RNA sample prep methods using miRNA microarrays. We found that while almost all miRNA levels correspond between the three methods, there were a few miRNAs whose levels consistently differed between the different prep techniques when measured by microarray analysis. These differences were corroborated by qPCR measurements. CONCLUSION: The correlations between Agilent miRNA microarray results and qPCR results are generally excellent, as are the correlations between different total RNA prep methods. However, there are a few miRNAs whose levels do not correlate between the microarray and qPCR measurements, or between different sample prep methods. Researchers should therefore take care when comparing results obtained using different analysis or sample preparation methods.


Assuntos
MicroRNAs/análise , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de RNA/métodos , Manejo de Espécimes/métodos , Sequência de Bases , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
BMC Genomics ; 8: 148, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17553173

RESUMO

BACKGROUND: The increasing use of DNA microarrays in biomedical research, toxicogenomics, pharmaceutical development, and diagnostics has focused attention on the reproducibility and reliability of microarray measurements. While the reproducibility of microarray gene expression measurements has been the subject of several recent reports, there is still a need for systematic investigation into what factors most contribute to variability of measured expression levels observed among different laboratories and different experimenters. RESULTS: We report the results of an interlaboratory comparison of gene expression array measurements on the same microarray platform, in which the RNA amplification and labeling, hybridization and wash, and slide scanning were each individually varied. Identical input RNA was used for all experiments. While some sources of variation have measurable influence on individual microarray signals, they showed very low influence on sample-to-reference ratios based on averaged triplicate measurements in the two-color experiments. RNA labeling was the largest contributor to interlaboratory variation. CONCLUSION: Despite this variation, measurement of one particular breast cancer gene expression signature in three different laboratories was found to be highly robust, showing a high intralaboratory and interlaboratory reproducibility when using strictly controlled standard operating procedures.


Assuntos
Neoplasias da Mama/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/isolamento & purificação , Análise de Variância , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Reprodutibilidade dos Testes
7.
PLoS One ; 10(3): e0119927, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790188

RESUMO

Our ability to engineer organisms with new biosynthetic pathways and genetic circuits is limited by the availability of protein characterization data and the cost of synthetic DNA. With new tools for reading and writing DNA, there are opportunities for scalable assays that more efficiently and cost effectively mine for biochemical protein characteristics. To that end, we have developed the Multiplex Library Synthesis and Expression Correction (MuLSEC) method for rapid assembly, error correction, and expression characterization of many genes as a pooled library. This methodology enables gene synthesis from microarray-synthesized oligonucleotide pools with a one-pot technique, eliminating the need for robotic liquid handling. Post assembly, the gene library is subjected to an ampicillin based quality control selection, which serves as both an error correction step and a selection for proteins that are properly expressed and folded in E. coli. Next generation sequencing of post selection DNA enables quantitative analysis of gene expression characteristics. We demonstrate the feasibility of this approach by building and testing over 90 genes for empirical evidence of soluble expression. This technique reduces the problem of part characterization to multiplex oligonucleotide synthesis and deep sequencing, two technologies under extensive development with projected cost reduction.


Assuntos
DNA/genética , Genes Sintéticos , Oligonucleotídeos/genética , Biossíntese de Proteínas/genética , DNA/síntese química , Escherichia coli/genética , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/biossíntese
9.
Genome Res ; 18(3): 393-403, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18258921

RESUMO

The most widely used method for detecting genome-wide protein-DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment. Mixtures of human genomic DNA and "spike-ins" comprised of nearly 100 human sequences at various concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. We found that microarray platform choice is not the primary determinant of overall performance. In fact, variation in performance between labs, protocols, and algorithms within the same array platform was greater than the variation in performance between array platforms. However, each array platform had unique performance characteristics that varied with tiling resolution and the number of replicates, which have implications for cost versus detection power. Long oligonucleotide arrays were slightly more sensitive at detecting very low enrichment. On all platforms, simple sequence repeats and genome redundancy tended to result in false positives. LM-PCR and WGA, the most popular sample amplification techniques, reproduced relative enrichment levels with high fidelity. Performance among signal detection algorithms was heavily dependent on array platform. The spike-in DNA samples and the data presented here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods can be evaluated.


Assuntos
Imunoprecipitação da Cromatina/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Aberrações Cromossômicas , DNA/química , Genoma Humano , Humanos , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase , Curva ROC , Reprodutibilidade dos Testes , Sequências de Repetição em Tandem
10.
RNA ; 13(1): 151-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17105992

RESUMO

We have developed a sensitive, accurate, and multiplexed microRNA (miRNA) profiling assay that is based on a highly efficient labeling method and novel microarray probe design. The probes provide both sequence and size discrimination, yielding in most cases highly specific detection of closely related mature miRNAs. Using a simple, single-vial experimental protocol, 120 ng of total RNA is directly labeled using Cy3 or Cy5, without fractionation or amplification, to produce precise and accurate measurements that span a linear dynamic range from 0.2 amol to 2 fmol of input miRNA. The results can provide quantitative estimates of the miRNA content for the tissues studied. The assay is also suitable for use with formalin-fixed paraffin-embedded clinical samples. Our method allows rapid design and validation of probes for simultaneous quantitative measurements of all human miRNA sequences in the public databases and to new miRNA sequences as they are reported.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Carbocianinas/química , Humanos , Sondas RNA/química , Sensibilidade e Especificidade , Distribuição Tecidual
11.
Proc Natl Acad Sci U S A ; 101(51): 17765-70, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15591353

RESUMO

Array-based comparative genomic hybridization (CGH) measures copy-number variations at multiple loci simultaneously, providing an important tool for studying cancer and developmental disorders and for developing diagnostic and therapeutic targets. Arrays for CGH based on PCR products representing assemblies of BAC or cDNA clones typically require maintenance, propagation, replication, and verification of large clone sets. Furthermore, it is difficult to control the specificity of the hybridization to the complex sequences that are present in each feature of such arrays. To develop a more robust and flexible platform, we created probe-design methods and assay protocols that make oligonucleotide microarrays synthesized in situ by inkjet technology compatible with array-based comparative genomic hybridization applications employing samples of total genomic DNA. Hybridization of a series of cell lines with variable numbers of X chromosomes to arrays designed for CGH measurements gave median ratios for X-chromosome probes within 6% of the theoretical values (0.5 for XY/XX, 1.0 for XX/XX, 1.4 for XXX/XX, 2.1 for XXXX/XX, and 2.6 for XXXXX/XX). Furthermore, these arrays detected and mapped regions of single-copy losses, homozygous deletions, and amplicons of various sizes in different model systems, including diploid cells with a chromosomal breakpoint that has been mapped and sequenced to a precise nucleotide and tumor cell lines with highly variable regions of gains and losses. Our results demonstrate that oligonucleotide arrays designed for CGH provide a robust and precise platform for detecting chromosomal alterations throughout a genome with high sensitivity even when using full-complexity genomic samples.


Assuntos
DNA/genética , Genoma , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linhagem Celular , Aberrações Cromossômicas , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Homozigoto , Humanos , Masculino , Projetos de Pesquisa , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA