Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 585(7824): 277-282, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879489

RESUMO

Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours1-4, but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8+ T cells, thereby lowering intracellular levels of methionine and the methyl donor S-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Histonas/metabolismo , Metionina/metabolismo , Metilação , Neoplasias/metabolismo , Sistema L de Transporte de Aminoácidos/deficiência , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Histonas/química , Humanos , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Transcrição STAT5/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628760

RESUMO

Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.


Assuntos
Fenômenos Biológicos , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Neoplasias/genética , Reações Cruzadas
3.
Cell Commun Signal ; 20(1): 67, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585598

RESUMO

The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.


Assuntos
Neoplasias da Mama , Receptor Notch1 , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Optogenética , Receptor Notch1/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742901

RESUMO

Breast cancer (BC) is a heterogeneous disease with different intrinsic subtypes. The most aggressive subtype of BC-triple-negative breast cancer (TNBC) is characterized by high heterogeneity and metastasis rate, poor prognosis and lack of therapeutic targets due to the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Targeted therapies have been approved for many other cancers and even other subtypes of BC, but treatment options for TNBC are still mainly limited to chemotherapy. Therefore, new, more effective treatment regimens are needed. Combined chemotherapy with two or more active agents is considered a promising anti-neoplasm tool in order to achieve better therapeutic response and reduce therapy-related adverse effects. The study demonstrated an antagonistic effect commonly used in TNBC therapy cytostatic drug-paclitaxel (PAX) and sirtuin inhibitor: cambinol (CAM) in BT-549, MDA-MB-468 and HCC1937 TNBC cell lines. The type of pharmacological interaction was determined by a precise and rigorous pharmacodynamic method-isobolographic analysis. The cytotoxic and anti-proliferative effects of CAM used alone or combined with PAX were determined utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Induction of apoptosis in TNBC cell lines after PAX and CAM treatment applied individually or in combination was determined by flow cytometry (FACS) as a number of cells with active caspase-3. It has been observed that both agents used separately inhibit cell proliferation and induce apoptosis; however, applying them in combination ameliorated antiproliferative and pro-apoptotic effects in all analyzed TNBC cell lines. Our results demonstrate that CAM and PAX used in combination act antagonistically, limiting anti-cancer efficacy and showing the importance of preclinical testing.


Assuntos
Sirtuínas , Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Naftalenos , Paclitaxel , Pirimidinonas , Neoplasias de Mama Triplo Negativas/patologia
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142236

RESUMO

Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)-methanol (MeOH)-water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.


Assuntos
Alcaloides , Alcaloides de Berberina , Berberina , Coptis , Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Alcaloides/análise , Alcaloides/farmacologia , Animais , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Bromodesoxiuridina , Clorofórmio , Cisplatino , Coptis/química , Coptis chinensis , Medicamentos de Ervas Chinesas/química , Ácido Clorídrico , Isoquinolinas , Metanol , Solventes , Neoplasias Gástricas/tratamento farmacológico , Água , Peixe-Zebra
6.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069024

RESUMO

Precise analysis of the genetic expression and functioning of proteins requires experimental approaches that, among others, enable tight control of gene expression at the transcriptional level. Doxycycline-induced Tet-On/Tet-Off expression systems provide such an opportunity, and are frequently used to regulate the activity of genes in eukaryotic cells. Since its development, the Tet-system has evolved tight gene control in mammalian cells; however, some challenges are still unaddressed. In the current set up, the establishment of the standard Tet-based system in target cells is time-consuming and laborious and has been shown to be inefficient, especially in a long-term perspective. In this work, we present an optimized inducible expression system, which enables rapid generation of doxycycline-responsive cells according to a one- or two-step protocol. The reported modifications of the Tet-On system expand the toolbox for regulated mammalian gene expression and provide high, stable, and homogenous expression of the Tet-On3G transactivator, which is of fundamental importance in the regulation of transgenes.


Assuntos
Antibacterianos/farmacologia , Regulação da Expressão Gênica , Técnicas Genéticas , Vetores Genéticos/genética , Animais , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Proteína Ribossômica L10/genética , Tetraciclina/farmacologia , Transativadores/genética , Transgenes
7.
J Transl Med ; 18(1): 220, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487171

RESUMO

BACKGROUND: Previous studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 (sPD-L1) in human cancers. However, still contradictory results exist. Our aim was evaluation of PD-L1-expressing monocytic myeloid-derived suppressor cells (M-MDSCs), monocytes/macrophages (MO/MA), tumour cells (TC) and immune/inflammatory cells (IC) as well as investigation of the sPD-L1 in ovarian cancer (OC) patients. METHODS: The group of 74 pretreatment women were enrollment to the study. The expression of PD-L1 on M-MDSCS and MO/MA was assessed by flow cytometry. The profile of sPD-L1 was examined with ELISA. The expression of PD-L1 in mononuclear cells (MCs) was analyzed using real time PCR. PD-L1 immunohistochemical analysis was prepared on TC and IC. An in silico validation of prognostic significance of PD-L1 mRNA expression was performed based microarray datasets. RESULTS: OC patients had significantly higher frequency of MO/MA versus M-MDSC in the blood, ascites and tumour (each p < 0.0001). In contrast, PD-L1 expression was higher on M-MDSCs versus MO/MA in the blood and ascites (each p < 0.0001), but not in the tumour (p > 0.05). Significantly higher accumulation of blood-circulating M-MDSC, MO/MA, PD-L1+M-MDSC, PD-L1+MO/MA and sPD-L1 was observed in patients versus control (p < 0.001, p < 0.05, p < 0.001, p < 0.001 and p < 0.0001, respectively). Accumulation of these factors was clinicopathologic-independent (p > 0.05). The expression of PD-L1 was significantly higher on IC versus TC (p < 0.0001) and was clinicopathologic-independent (p > 0.05) except higher level of PD-L1+TC in the endometrioid versus mucinous tumours. Interestingly, blood-circulating sPD-L1 positively correlated with PD-L1+M-MDSCs (p = 0.03) and PD-L1+MO/MA (p = 0.02) in the blood but not with these cells in the ascites and tumours nor with PD-L1+TC/IC (each p > 0.05). PD-L1 and sPD-L1 were not predictors of overall survival (OS; each p > 0.05). Further validation revealed no association between PD-L1 mRNA expression and OS in large independent OC patient cohort (n = 655, p > 0.05). CONCLUSIONS: Although PD-L1 may not be a prognostic factor for OC, our study demonstrated impaired immunity manifested by up-regulation of PD-L1/sPD-L1. Furthermore, there was a positive association between PD-L1+ myeloid cells and sPD-L1 in the blood, suggesting that sPD-L1 may be a noninvasive surrogate marker for PD-L1+myeloid cells immunomonitoring in OC. Overall, these data should be under consideration during future clinical studies/trials.


Assuntos
Antígeno B7-H1 , Células Supressoras Mieloides , Neoplasias Ovarianas , Feminino , Humanos , Macrófagos , Monócitos , Neoplasias Ovarianas/genética
9.
Bioorg Chem ; 94: 103426, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31784064

RESUMO

In the present study, we compared the anticancer potential of quercetin (3,3',4',5,7-pentahydroxyflavone, I) and its sulfonic derivatives sodium/potassium quercetin-5'-sulfonates (described as II and III) against several human carcinoma cell lines. Quercetin (I) was used as a starting compound for synthesis of II and III. In this work, a modified and more efficient method of synthesizing derivatives II and III has been described. The molecular structures of the compounds were characterized in a solution and in the solid state using 1H NMR, 13C NMR, 2D NMR, and XPS spectroscopy, respectively. The stoichiometry of these complexes was determined by elemental analysis as well as thermogravimetric and X-ray fluorescence methods. The spectral data allowed complete characterization of the investigated compounds in the solution and in the solid state and unambiguous determination of the place of substitution of the sulfonic group in the phenyl ring in the C-5' position. Our in vitro studies revealed that II and III prominently reduced the viability of the HT-29 colon cancer cell line. Additionally, we observed that sulfonic derivatives decreased proliferation of colon (HT-29, LS180), lung (A549), and breast (T47D) cancer cell lines. Moreover, we detected a lower cytotoxic effect of II and III on several normal cell lines (colon epithelial CCD 841 CoTr, mouse subcutaneous connective tissue L-929, and human skin fibroblasts HSF cell lines) than that exerted by pure quercetin. The anticancer properties were especially evident in the HT-29 colon cancer cell line, where cell cycle inhibition in the G2-M phase and prominent apoptosis induced by II and III were observed. In conclusion, the sodium/potassium quercetin-5'-sulfonates prepared from quercetin showed promising anti-proliferative and pro-apoptotic activity against colon cancer cells. Therefore, we support the opinion that sodium/potassium quercetin-5'-sulfonates should be considered as promising organometallic compounds for possible clinical applications.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Potássio/uso terapêutico , Quercetina/uso terapêutico , Sódio/uso terapêutico , Antineoplásicos/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Células HT29 , Humanos , Estrutura Molecular , Potássio/farmacologia , Quercetina/farmacologia , Sódio/farmacologia
10.
Mol Biol Rep ; 46(6): 5977-5982, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31440877

RESUMO

Novel α-(1 → 3)-glucooligosaccharides (α-(1 → 3)-GOS) were prepared by acid hydrolysis of α-(1→ 3)-glucan isolated from Fomitopsis betulina fruiting bodies and characterized. Their anti-cancer potential was evaluated in in vitro assays in a colon cancer cell model. The tested α-(1 → 3)-GOS showed antiproliferative (MTT assay) and pro-apoptotic (Annexin V-FITC and PI technique) features against colon cancer but not against normal epithelial colon cells. Additionally, we did not observe cytotoxic activity (neutral red and lactate dehydrogenase assays) of α-(1 → 3)-GOS against several types of normal cell lines. In the present study, we demonstrated the anticancer potential of α-(1 → 3)-GOS in a colon carcinoma model. The anti-tumour effect of α-(1 → 3)-GOS is related with induction of apoptosis. Based on these results, we conclude that α-(1 → 3)-GOS may be considered as a dietary or therapeutic agent with an ability to inhibit the growth of cancer cells.


Assuntos
Coriolaceae/química , Coriolaceae/metabolismo , Glucanos/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Carpóforos/química , Carpóforos/metabolismo , Glucanos/metabolismo , Glucanos/farmacologia , Humanos , Hidrólise , Camundongos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Tumour Biol ; 40(10): 1010428318804937, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30319054

RESUMO

Ovarian cancer remains the most lethal gynecologic malignancy. This is due to lack of effective screening, diagnosis predominance in late stage of disease, a high recurrence rate after primary therapy, and poor treatment response in platinum-resistant tumor. Thus, unique biomarkers, predictive of individual disease course, and prognosis are urgently needed. The aim of our study was to assess the clinicopathological significance of plasma, peritoneal fluid, and tumor tissue levels of mesothelin in epithelial ovarian cancer patients. Plasma and peritoneal fluid levels of mesothelin were measured by enzyme-linked immunosorbent assay. Tissue expression of MSLN was evaluated using quantitative real-time polymerase chain reaction. Preoperative plasma mesothelin levels were significantly higher in epithelial ovarian cancer patients in comparison to the patients with benign tumor and controls. There have been noticed significant differences in the plasma mesothelin levels based on International Federation of Gynecology and Obstetrics stage, grade, and histology type. No significant changes were observed between Kurman and Shih type I versus type II epithelial ovarian cancer. Interestingly, peritoneal fluid mesothelin levels revealed significant differences based on both grade and Kurman and Shih-type epithelial ovarian cancer. There were no relevant changes in the mesothelin level in peritoneal fluid between different stages and histology types compared to benign tumor. MSLN expression level in tumor tissue was significantly higher based on stage, grade, and Kurman and Shih-type epithelial ovarian cancer than in the benign masses. In addition, data showed significant higher MSLN expression in endometrioid tumors compared to benign masses and serous tumors. Plasma, peritoneal fluid, and tumor tissue levels of mesothelin positively correlated with level of CA125. Low mesothelin concentrations in plasma were also associated with prolonged patient survival. More importantly, we revealed that plasma mesothelin level was correlated with both peritoneal fluid mesothelin level and tumor MSLN expression. This study highlights that plasma mesothelin level may be a useful noninvasive biomarker surrogate for local tumor mesothelin status in monitoring of epithelial ovarian cancer patients.


Assuntos
Adenocarcinoma Mucinoso/patologia , Líquido Ascítico/metabolismo , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/patologia , Proteínas Ligadas por GPI/metabolismo , Neoplasias Ovarianas/patologia , Adenocarcinoma Mucinoso/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno Ca-125/metabolismo , Estudos de Casos e Controles , Cistadenocarcinoma Seroso/metabolismo , Neoplasias do Endométrio/metabolismo , Feminino , Seguimentos , Humanos , Mesotelina , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Plasma/metabolismo , Prognóstico , Taxa de Sobrevida , Adulto Jovem
12.
Med Chem Res ; 27(9): 2150-2159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220832

RESUMO

In this paper, we present the biological effect of the newly synthesized 2-(2,4-dihydroxyphenyl)-4H-benzofuro[3,2-d][1,3]thiazin-4-one (DPBT) on human colon adenocarcinoma cell lines (HT-29 and LS180). Additionally, DPBT cytotoxicity was examined in human colon epithelial cells (CCD 841 CoTr) and human skin fibroblasts (HSF). The studies revealed a significant decrease in the proliferation of cancer cells after exposure to DPBT at concentrations in the range of 10-100 µM. Additionally, DPBT was not toxic to normal CCD 841 CoTr and HSF cells at concentrations that induced inhibition of cancer cell proliferation. The nature of the anti-proliferative action of DPBT in the cell cycle progression in colon cancer cells and the expression of proteins involved in this process were examined by flow cytometry and western blotting, respectively. The investigations demonstrated higher sensitivity of LS180 than HT-29 to the DPBT treatment. The anti-proliferative action of DPBT in LS180 was attributed to cell cycle arrest in the G1 phase via up-regulation of p27KIP1 and down-regulation of cyclin D1 and CDK4 proteins.

13.
Biomed Pharmacother ; 177: 116822, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906029

RESUMO

Aberration of Notch signaling is one of the key events involved in the development and progression of head and neck squamous cell carcinoma (HNSCC). The Notch pathway controls the tissue-specific differentiation of normal squamous epithelial cells and is frequently altered in squamous carcinomas, thus affecting their proliferation, growth, survival, and chemosensitivity or resistance against anti-cancer agents. In this study, we show that the use of novel, small-molecule inhibitors of Notch signaling, such as FLI-06, can have a beneficial effect on increasing the chemosensitivity of HNSCC to taxane-based chemotherapy. Inhibition of Notch signaling by FLI-06 alone virtually blocks the proliferation and growth of HNSCC cells in both 2D and 3D cultures and the zebrafish model, which is accompanied by down-regulation of key Notch target genes and proteins. Mechanistically, FLI-06 treatment causes cell cycle arrest in the G1-phase and induction of apoptosis in HNSCC, which is accompanied by increased c-JunS63 phosphorylation. Combining FLI-06 with Docetaxel shows a synergistic effect and partially blocks the cell growth of aggressive HNSCC cells via enhanced apoptosis and modification of c-JunS243 phosphorylation via GSK-3ß inhibition. In conclusion, inhibition of Notch signaling in HNSCC cells that retain active Notch signaling significantly supports taxane-based anticancer activities via modulation of both the GSK-3ß and the c-Jun.

14.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001580

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer type, with cisplatin being a primary treatment approach. However, drug resistance and therapy failure pose a significant challenge, affecting nearly 50% of patients over time. This research had two aims: (1) to optimize a 3D cell-culture method for assessing the interplay between tumor cells and cancer-associated fibroblasts (CAFs) in vitro; and (2) to study how cisplatin impacts the Notch pathway, particularly considering the role of CAFs. Using our optimized "3D sheet model" approach, we tested two HNSCC cell lines with different cisplatin sensitivities and moderate, non-mutated NOTCH1 and -3 expressions. Combining cisplatin with a γ-secretase inhibitor (crenigacestat) increased sensitivity and induced cell death in the less sensitive cell line, while cisplatin alone was more effective in the moderately sensitive line and sensitivity decreased with the Notch inhibitor. Cisplatin boosted the expression of core Notch signaling proteins in 3D monocultures of both lines, which was counteracted by crenigacestat. In contrast, the presence of patient-derived CAFs mitigated effects and protected both cell lines from cisplatin toxicity. Elevated NOTCH1 and NOTCH3 protein levels were consistently correlated with reduced cisplatin sensitivity and increased cell survival. Additionally, the Notch ligand JAG2 had additional, protective effects reducing cell death from cisplatin exposure. In summary, we observed an inverse relationship between NOTCH1 and NOTCH3 levels and cisplatin responsiveness, overall protective effects by CAFs, and a potential link between JAG2 expression with tumor cell survival.

15.
Cancers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760535

RESUMO

Notch signaling is responsible for conveying messages between cells through direct contact, playing a pivotal role in tissue development and homeostasis. The modulation of Notch-related processes, such as cell growth, differentiation, viability, and cell fate, offer opportunities to better understand and prevent disease progression, including cancer. Currently, research efforts are mainly focused on attempts to inhibit Notch signaling in tumors with strong oncogenic, gain-of-function (GoF) or hyperactivation of Notch signaling. The goal is to reduce the growth and proliferation of cancer cells, interfere with neo-angiogenesis, increase chemosensitivity, potentially target cancer stem cells, tumor dormancy, and invasion, and induce apoptosis. Attempts to pharmacologically enhance or restore disturbed Notch signaling for anticancer therapies are less frequent. However, in some cancer types, such as squamous cell carcinomas, preferentially, loss-of-function (LoF) mutations have been confirmed, and restoring but not blocking Notch functions may be beneficial for therapy. The modulation of Notch signaling can be performed at several key levels related to NOTCH receptor expression, translation, posttranslational (proteolytic) processing, glycosylation, transport, and activation. This further includes blocking the interaction with Notch-related nuclear DNA transcription. Examples of small-molecular chemical compounds, that modulate individual elements of Notch signaling at the mentioned levels, have been described in the recent literature.

16.
Cells ; 12(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899836

RESUMO

Background: Ovarian cancer (OC) is the most lethal malignancy of the female reproductive tract. Consequently, a better understanding of the malignant features in OC is pertinent. Mortalin (mtHsp70/GRP75/PBP74/HSPA9/HSPA9B) promotes cancer development, progression, metastasis, and recurrence. Yet, there is no parallel evaluation and clinical relevance of mortalin in the peripheral and local tumor ecosystem in OC patients. Methods: A cohort of 92 pretreatment women was recruited, including 50 OC patients, 14 patients with benign ovarian tumors, and 28 healthy women. Blood plasma and ascites fluid-soluble mortalin concentrations were measured by ELISA. Mortalin protein levels in tissues and OC cells were analyzed using proteomic datasets. The gene expression profile of mortalin in ovarian tissues was evaluated through the analysis of RNAseq data. Kaplan-Meier analysis was used to demonstrate the prognostic relevance of mortalin. Results: First, we found upregulation of local mortalin in two different ecosystems, i.e., ascites and tumor tissues in human OC compared to control groups. Second, abundance expression of local tumor mortalin is associated with cancer-driven signaling pathways and worse clinical outcome. Third, high mortalin level in tumor tissues, but not in the blood plasma or ascites fluid, predicts worse patient prognosis. Conclusions: Our findings demonstrate a previously unknown mortalin profile in peripheral and local tumor ecosystem and its clinical relevance in OC. These novel findings may serve clinicians and investigators in the development of biomarker-based targeted therapeutics and immunotherapies.


Assuntos
Ecossistema , Neoplasias Ovarianas , Humanos , Feminino , Ascite , Relevância Clínica , Proteômica
17.
Sci Rep ; 13(1): 13700, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607974

RESUMO

Notch signalling is one of the key molecular pathways involved in cell-to-cell signal transduction. Although the mechanisms of action of the NOTCH receptors are already relatively well known, their biological implications remain unclear, especially during the initiation and progression of head and neck squamous cell carcinoma (HNSCC). Here, we present the growth- and differentiation-modulating effects of various "next generation" small molecule Notch modulators represented by RIN-1, and CB-103, on HNSCC, compared to gamma secretase inhibitors as "conventional" NOTCH interfering compounds, like DAPT. These molecules were tested in different cell- and tissue culture conditions represented by 2D monolayer, non-adherent or spheroid culture, 3D organoid cultures, and zebrafish in vivo model. The most pronounced, pleiotropic effects were observed for the NOTCH modulator RIN-1. At the molecular level, RIN-1-dependent activation of Notch signalling led to characteristic changes in the expression of NOTCH-regulated targets, i.e., the transcriptional suppressors HES1 and HEY1, p21 (CDKN1A) cell cycle inhibitor, and pro-apoptotic BAX markers. These changes led to restriction of proliferation, growth, and reduced motility of HNSCC cells in 2D cultures. Consequently, cell cycle arrest in the G2-M phase and induction of apoptosis were observed. Similar anticancer effects were observed in 3D cultures and in the zebrafish model. In contrast, RIN-1 treatment resulted in inhibition of Notch signalling and the growth of HNSCC spheroids under non-adherent cell culture conditions. Our results suggest that modulation of Notch signalling could be used as a chemotherapeutic agent in selected patients with intact NOTCH signaling.


Assuntos
Neoplasias de Cabeça e Pescoço , Peixe-Zebra , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Transdução de Sinais , Apoptose , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
18.
Cells ; 11(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406775

RESUMO

Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.


Assuntos
Antineoplásicos , Neoplasias da Mama , Furanos , Paclitaxel , Quinolinas , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Feminino , Furanos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Paclitaxel/farmacologia , Quinolinas/farmacologia , Sirtuína 2/antagonistas & inibidores
19.
Pharmacol Rep ; 74(5): 1011-1024, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35900723

RESUMO

BACKGROUND: Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death in women worldwide. Sirtuin inhibitors (SIRTi), belonging to the histone deacetylase inhibitors group (HDIs), are potent epigenetic drugs that have been investigated for therapeutic use in different clinical disorders, including hematological malignancies and solid tumors. METHODS: The influence of cambinol (CAM; SIRTi) used individually or in combination with standard chemotherapeutic paclitaxel (PAX) on viability (MTT assay), proliferation (BrdU assay), induction of apoptosis and cell cycle arrest (FACS analysis) was determined in MCF7 luminal and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The types of pharmacological drug-drug interaction between CAM and PAX were determined by an exact and rigorous pharmacodynamic method-an isobolography, to determine the presence of synergism, addition or antagonism between analyzed drugs using a variety of fixed-dose ratios. RESULTS: The combination of CAM and PAX at a fixed ratio of 1:1 exerted additive interaction in the viability of MCF7 and MDA-MB-231 BC cells. Both active agents used separately reduced viability and proliferation of BC cells as well as induced apoptosis and cell cycle arrest. These effects were much more evident in MCF7 than in MDA-MB-231 BC cells. Additionally, CAM combined with PAX increased anti-cancer activity compared to PAX used alone. CONCLUSION: CAM might be considered a potential therapeutic agent individually or in combined therapy with PAX against luminal or TNBC.


Assuntos
Neoplasias da Mama , Sirtuínas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Paclitaxel/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sirtuínas/farmacologia , Sirtuínas/uso terapêutico , Bromodesoxiuridina/farmacologia , Bromodesoxiuridina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose
20.
Cancers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944837

RESUMO

Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA