Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503316

RESUMO

This Special Issue aims at collecting several original state-of-the-art research experiences in the area of intelligent applications in the IoT and Sensor networks environment, by analyzing several open issues and perspectives associated with such scenarios, in order to explore novel potentialities and solutions and face with the emerging challenges.

2.
BMC Bioinformatics ; 15 Suppl 5: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077818

RESUMO

BACKGROUND: The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n(3)) and of O(n(5)) order, respectively, and so, the algorithm is unaffordable for huge data sets. RESULTS: We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of the communications between different memories (RAM, Cache, Mass, Virtual) and to achieve efficient I/O performance, we design a mass storage structure able to access its data with a high degree of temporal and spatial locality. Then we develop a parallel implementation of the algorithm. We model it as a SPMD system together to a Message-Passing Programming Paradigm. Here, we adopt the high-level message-passing systems MPI (Message Passing Interface) in the version for the Java programming language, MPJ. The parallel processing is organized into four stages: partitioning, communication, agglomeration and mapping. The decomposition of the U-BRAIN algorithm determines the necessity of a communication protocol design among the processors involved. Efficient synchronization design is also discussed. CONCLUSIONS: In the context of a collaboration between public and private institutions, the parallel model of U-BRAIN has been implemented and tested on the INTEL XEON E7xxx and E5xxx family of the CRESCO structure of Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), developed in the framework of the European Grid Infrastructure (EGI), a series of efforts to provide access to high-throughput computing resources across Europe using grid computing techniques. The implementation is able to minimize both the memory space and the execution time. The test data used in this study are IPDATA (Irvine Primate splice- junction DATA set), a subset of HS3D (Homo Sapiens Splice Sites Dataset) and a subset of COSMIC (the Catalogue of Somatic Mutations in Cancer). The execution time and the speed-up on IPDATA reach the best values within about 90 processors. Then the parallelization advantage is balanced by the greater cost of non-local communications between the processors. A similar behaviour is evident on HS3D, but at a greater number of processors, so evidencing the direct relationship between data size and parallelization gain. This behaviour is confirmed on COSMIC. Overall, the results obtained show that the parallel version is up to 30 times faster than the serial one.


Assuntos
Algoritmos , Biologia Computacional/métodos , Metodologias Computacionais , Animais , Biologia Computacional/instrumentação , Bases de Dados de Ácidos Nucleicos , Europa (Continente) , Humanos , Software
3.
Neural Comput Appl ; 35(19): 13861-13877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33814729

RESUMO

With the emergence of COVID-19, mobile health applications have increasingly become crucial in contact tracing, information dissemination, and pandemic control in general. Apps warn users if they have been close to an infected person for sufficient time, and therefore potentially at risk. The distance measurement accuracy heavily affects the probability estimation of being infected. Most of these applications make use of the electromagnetic field produced by Bluetooth Low Energy technology to estimate the distance. Nevertheless, radio interference derived from numerous factors, such as crowding, obstacles, and user activity can lead to wrong distance estimation, and, in turn, to wrong decisions. Besides, most of the social distance-keeping criteria recognized worldwide plan to keep a different distance based on the activity of the person and on the surrounding environment. In this study, in order to enhance the performance of the COVID-19 tracking apps, a human activity classifier based on Convolutional Deep Neural Network is provided. In particular, the raw data coming from the accelerometer sensor of a smartphone are arranged to form an image including several channels (HAR-Image), which is used as fingerprints of the in-progress activity that can be used as an additional input by tracking applications. Experimental results, obtained by analyzing real data, have shown that the HAR-Images are effective features for human activity recognition. Indeed, the results on the k-fold cross-validation and obtained by using a real dataset achieved an accuracy very close to 100%.

4.
Cancers (Basel) ; 15(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37835519

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.

5.
J Cardiovasc Dev Dis ; 10(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826570

RESUMO

Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.

6.
Soft comput ; 26(19): 10075-10083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966350

RESUMO

Coronavirus disease 19 (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, which is responsible for the ongoing global pandemic. Stringent measures have been adopted to face the pandemic, such as complete lockdown, shutting down businesses and trade, as well as travel restrictions. Nevertheless, such solutions have had a tremendous economic impact. Although the use of recent vaccines seems to reduce the scale of the problem, the pandemic does not appear to finish soon. Therefore, having a forecasting model about the COVID-19 spread is of paramount importance to plan interventions and, then, to limit the economic and social damage. In this paper, we use Genetic Programming to evidence dependences of the SARS-CoV-2 spread from past data in a given Country. Namely, we analyze real data of the Campania Region, in Italy. The resulting models prove their effectiveness in forecasting the number of new positives 10/15 days before, with quite a high accuracy. The developed models have been integrated into the context of SVIMAC-19, an analytical-forecasting system for the containment, contrast, and monitoring of Covid-19 within the Campania Region.

7.
Viruses ; 14(10)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36298659

RESUMO

The continuous and rapid spread of the COVID-19 pandemic has emphasized the need to seek new therapeutic and prophylactic treatments. Peptide inhibitors are a valid alternative approach for the treatment of emerging viral infections, mainly due to their low toxicity and high efficiency. Recently, two small nucleotide signatures were identified in the genome of some members of the Coronaviridae family and many other human pathogens. In this study, we investigated whether the corresponding amino acid sequences of such nucleotide sequences could have effects on the viral infection of two representative human coronaviruses: HCoV-OC43 and SARS-CoV-2. Our results showed that the synthetic peptides analyzed inhibit the infection of both coronaviruses in a dose-dependent manner by binding the RBD of the Spike protein, as suggested by molecular docking and validated by biochemical studies. The peptides tested do not provide toxicity on cultured cells or human erythrocytes and are resistant to human serum proteases, indicating that they may be very promising antiviral peptides.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Glicoproteína da Espícula de Coronavírus/metabolismo , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Peptídeos/farmacologia , Peptídeo Hidrolases , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA