RESUMO
Exposure to early-life stress (ELS) has been related to an increased susceptibility to psychiatric disorders later in life. Although the molecular mechanisms underlying this association are still under investigation, glucocorticoid signaling has been proposed to be a key mediator. Here, we used two preclinical models, the prenatal stress (PNS) animal model and an in vitro model of hippocampal progenitor cells, to assess the long-term effect of ELS on FKBP5, NR3C1, NR3C2, and FoxO1, four stress-responsive genes involved in the effects of glucocorticoids. In the hippocampus of male PNS rats sacrificed at different time points during neurodevelopment (PND 21, 40, 62), we found a statistically significant up-regulation of FKBP5 at PND 40 and PND 62 and a significant increase in FoxO1 at PND 62. Interestingly, all four genes were significantly up-regulated in differentiated cells treated with cortisol during cell proliferation. As FKBP5 was consistently modulated by PNS at adolescence (PND 40) and adulthood (PND 62) and by cortisol treatment after cell differentiation, we measured a panel of miRNAs targeting FKBP5 in the same samples where FKBP5 expression levels were available. Interestingly, both miR-20b-5p and miR-29c-3p were significantly reduced in PNS-exposed animals (both at PND40 and 62) and also in the in vitro model after cortisol exposure. Our results highlight the key role of miR-20b-5p and miR-29c-3p in sustaining the long-term effects of ELS on the stress response system, representing a mechanistic link possibly contributing to the enhanced stress-related vulnerability to mental disorders.
Assuntos
Hidrocortisona , MicroRNAs , Adolescente , Animais , Feminino , Humanos , Masculino , Gravidez , Ratos , Glucocorticoides , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de SinaisRESUMO
Early life stress, especially when experienced during the first period of life, affects the brain developmental trajectories leading to an enhanced vulnerability for stress-related psychiatric disorders later in life. Although both clinical and preclinical studies clearly support this association, the biological pathways deregulated by such exposure, and the effects in shaping the neurodevelopmental trajectories, have so far been poorly investigated. By using the prenatal stress (PNS) model, a well-established rat model of early life stress, we performed transcriptomic analyses in the prefrontal cortex of rats exposed or not to PNS and sacrificed at different postnatal days (PNDs 21, 40, 62). We first investigated the long-lasting mechanisms and pathways affected in the PFC. We have decided to focus on the prefrontal cortex because we have previously shown that this brain region is highly sensitive to PNS exposure. We found that adult animals exposed to PNS show alterations in 389 genes, mainly involved in stress and inflammatory signalling. We then wanted to establish whether PNS exposure could also affect the neurodevelopmental trajectories in order to identify the most critical temporal window. We found that PNS rats show the most significant changes during adolescence (between PND 40 versus PND 21), with alterations of several pathways related to stress, inflammation and metabolism, which were maintained until adulthood.
Assuntos
Encéfalo , Córtex Pré-Frontal , Animais , Feminino , Gravidez , Ratos , Estresse PsicológicoRESUMO
BACKGROUND: Default mode network (DMN) dysfunction is well established in Alzheimer's disease (AD) and documented in both preclinical stages and at-risk subjects, thus representing a potential disease target. Multi-sessions of repetitive transcranial magnetic stimulation (rTMS) seem capable of modulating DMN dynamics and memory in healthy individuals and AD patients; however, the potential of this approach in at-risk subjects has yet to be tested. OBJECTIVE: This study will test the effect of rTMS on the DMN in healthy older individuals carrying the strongest genetic risk factor for AD, the Apolipoprotein E (APOE) É4 allele. METHODS: We will recruit 64 older participants without cognitive deficits, 32 APOE É4 allele carriers and 32 non-carriers as a reference group. Participants will undergo four rTMS sessions of active (high frequency) or sham DMN stimulation. Multimodal imaging exam (including structural, resting-state, and task functional MRI, and diffusion tensor imaging), TMS with concurrent electroencephalography (TMS-EEG), and cognitive assessment will be performed at baseline and after the stimulation sessions. RESULTS: We will assess changes in DMN connectivity with resting-state functional MRI and TMS-EEG, as well as changes in memory performance in APOE É4 carriers. We will also investigate the mechanisms underlying DMN modulation through the assessment of correlations with measures of neuronal activity, excitability, and structural connectivity with multimodal imaging. CONCLUSION: The results of this study will inform on the physiological and cognitive outcomes of DMN stimulation in subjects at risk for AD and on the possible mechanisms. These results may outline the design of future non-pharmacological preventive interventions for AD.
Assuntos
Doença de Alzheimer/genética , Rede de Modo Padrão , Projetos de Pesquisa , Estimulação Magnética Transcraniana , Idoso , Doença de Alzheimer/prevenção & controle , Apolipoproteína E4/genética , Feminino , Humanos , Masculino , Memória/fisiologia , Imagem MultimodalRESUMO
There is an overwhelming evidence proving that mental disorders are not the product of a single risk factor - i.e. genetic variants or environmental factors, including exposure to maternal perinatal mental health problems or childhood adverse events - rather the product of a trajectory of cumulative and multifactorial insults occurring during development, such as exposures during the foetal life to adverse mental condition in the mother, or exposures to adverse traumatic events during childhood or adolescence. In this review, we aim to highlight the potential utility of a Convergent Functional Genomics (CFG) approach to clarify the complex brain-relevant molecular mechanisms and alterations induced by early life stress (ELS). We describe different studies based on CFG in psychiatry and neuroscience, and we show how this 'hypothesis-free' tool can prioritize a stringent number of genes modulated by ELS, that can be tested as potential candidates for Gene x Environment (GxE) interaction studies. We discuss the results obtained by using a CFG approach identifying FoxO1 as a gene where genetic variability can mediate the effect of an adverse environment on the development of depression. Moreover, we also demonstrate that FoxO1 has a functional relevance in stress-induced reduction of neurogenesis, and can be a potential target for the prevention or treatment of stress-related psychiatric disorders. Overall, we suggest that CFG approach could include trans-species and tissues data integration and we also propose the application of CFG to examine in depth and to prioritize top candidate genes that are affected by ELS across lifespan and generations.
RESUMO
Exposure to early life stress can interfere with neurodevelopmental trajectories to increase the vulnerability for psychiatric disorders later in life. With this respect, epigenetic mechanisms play a key role for the long-lasting changes in brain functions that may elicit and sustain psychopathologic outcomes. Here, we investigated DNA methylation changes as possible epigenetic mechanism mediating the effect of prenatal stress (PNS), an experimental paradigm associated with behavioral and molecular alterations relevant for psychiatric disorders. We identified 138 genes as being differentially methylated in the prefrontal cortex (PFC) and in the hippocampus (HIP) of male and female adult rats exposed to PNS. Among these genes, miR-30a and Neurod1 emerged as potential players for the negative outcomes associated with PNS exposure. Indeed, in addition to showing consistent methylation differences in both brain regions and in both sexes, and interacting with each other, they are both involved in Axon guidance and Neurotrophin signaling, which are important to neurodevelopmental disorders. We also found a significant reduction in the expression of a panel of genes (CAMK2A, c-JUN, LIMK1, MAP2K1, MAP2K2, PIK3CA and PLCG1) that belong to these two biological pathways and are also validated targets of miR-30a, pointing to a down-regulation of these pathways as a consequence of PNS exposure. Interestingly, we also found that miR-30a levels were significantly upregulated in depressed patients exposed to childhood trauma, as compared to control individuals. Importantly, we also found that a sub-chronic treatment with the atypical antipsychotic drug, lurasidone, during adolescence was able to prevent the up-regulation of miR-30a and normalized the expression of its target genes in response to PNS exposure. Our results demonstrate that miR-30a undergoes epigenetic changes following early life stress exposure and suggest that this miRNA could play a key role in producing broad and long-lasting alterations in neuroplasticity-related pathways, contributing to the etiology of psychiatric disorders.