Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430402

RESUMO

Maternal infections during pregnancy and the consequent maternal immune activation (MIA) are the major risk factors for autism spectrum disorder (ASD). Epidemiological evidence is corroborated by the preclinical models in which MIA leads to ASD-like behavioral abnormalities and altered neuroinflammatory profiles, with an increase in pro-inflammatory cytokines and microglial markers. In addition to neuroinflammatory response, an abnormal expression of endogenous retroviruses (ERVs) has been identified in neurodevelopmental disorders and have been found to correlate with disease severity. Our aim was to evaluate the transcriptional profile of several ERV families, ERV-related genes, and inflammatory mediators (by RT real-time PCR) in mouse offspring of both sexes, prenatally exposed to polyinosinic:polycytidylic acid (Poly I:C), a synthetic double-stranded RNA molecule targeting TLR-3 that mimics viral maternal infection during pregnancy. We found that prenatal exposure to Poly I:C deregulated the expression of some ERVs and ERV-related genes both in the prefrontal cortex (PFC) and hippocampus, while no changes were detected in the blood. Interestingly, sex-related differences in the expression levels of some ERVs, ERV-related genes, and inflammatory mediators that were higher in females than in males emerged only in PFC. Our findings support the tissue specificity of ERV and ERV-related transcriptional profiles in MIA mice.


Assuntos
Transtorno do Espectro Autista , Retrovirus Endógenos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Camundongos , Animais , Masculino , Feminino , Retrovirus Endógenos/genética , Mediadores da Inflamação , Transtorno do Espectro Autista/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Modelos Animais de Doenças , Poli I-C
2.
Cells ; 12(22)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998340

RESUMO

Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-ß-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.


Assuntos
Mitofagia , Sirtuína 3 , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Micronutrientes , Senescência Celular , Doxorrubicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA