RESUMO
The cerebellar cognitive affective syndrome (CCAS) has been consistently described in patients with acute/subacute cerebellar injuries. However, studies with chronic patients have had controversial findings that have not been explored with new cerebellar-target tests, such as the CCAS scale (CCAS-S). The objective of this research is to prove and contrast the usefulness of the CCAS-S and the Montreal Cognitive Assessment (MoCA) test to evaluate cognitive/affective impairments in patients with chronic acquired cerebellar lesions, and to map the cerebellar areas whose lesions correlated with dysfunctions in these tests. CCAS-S and MoCA were administrated to 22 patients with isolated chronic cerebellar strokes and a matched comparison group. The neural bases underpinning both tests were explored with multivariate lesion-symptom mapping (LSM) methods. MoCA and CCAS-S had an adequate test performance with efficient discrimination between patients and healthy volunteers. However, only impairments determined by the CCAS-S resulted in significant regional localization within the cerebellum. Specifically, patients with chronic cerebellar lesions in right-lateralized posterolateral regions manifested cognitive impairments inherent to CCAS. These findings concurred with the anterior-sensorimotor/posterior-cognitive dichotomy in the human cerebellum and revealed clinically intra- and cross-lobular significant regions (portions of right lobule VI, VII, Crus I-II) for verbal tasks that overlap with the "language" functional boundaries in the cerebellum. Our findings prove the usefulness of MoCA and CCAS-S to reveal cognitive impairments in patients with chronic acquired cerebellar lesions. This study extends the understanding of long-term CCAS and introduces multivariate LSM methods to identify clinically intra- and cross-lobular significant regions underpinning chronic CCAS.
Assuntos
Doenças Cerebelares , Transtornos Cognitivos , Acidente Vascular Cerebral , Cerebelo , Cognição , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicaçõesRESUMO
BACKGROUND: Recent resting-state functional magnetic resonance imaging studies have reported abnormal functional connectivity (FC) in the prefrontal cortex (PFC)-striatum circuit in patients with premanifest Huntington's disease (HD). However, there is a lack of evidence showing persistence of abnormal frontostriatal FC and its relation to cognitive flexibility performance in patients with clinically manifest HD. OBJECTIVE: The aim of this study was to evaluate the resting-state FC integrity of the frontostriatal circuit and its relation to cognitive flexibility in HD patients and healthy controls (HCs). METHOD: Eighteen patients with early clinical HD manifestation and 18 HCs matched for age, sex, and education participated in this study. Both groups performed the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra Dimensional (IED) set-shift task, which measures cognitive flexibility. Resting-state functional magnetic resonance images were also acquired to examine the FC in specific frontostriatal circuits. Eight regions of interest were preselected based on regions previously associated with extradimensional (ED) shifting in patients with premanifest HD. RESULTS: Significant negative correlations between the number of attentional set-shifting errors and the ventral striatum-ventrolateral PFC FC were found in the HD group. This group also showed negative FC correlations between the total errors and the FC between right ventral striatum-right ventrolateral PFC, left ventral striatum-left ventrolateral PFC, and right ventral striatum-left ventrolateral PFC. Negative correlations between the ED errors and left ventral striatum-left ventrolateral PFC and right ventral striatum-right ventrolateral PFC FC were also found. Finally, a positive correlation between the number of stages completed and left ventral striatum-left ventrolateral PFC FC was found. CONCLUSIONS: Manifest HD patients show significant cognitive flexibility deficits in attentional set-shifting that are associated with FC alterations in the frontostriatal circuit. These results show that FC abnormalities found in the prodromal stage of the disease can also be associated with cognitive flexibility deficits at a later clinical stage, making them good candidates to be explored in longitudinal studies.
Assuntos
Transtornos Cognitivos , Doença de Huntington , Humanos , Doença de Huntington/complicações , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Vias Neurais/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cognição , Mapeamento EncefálicoRESUMO
BACKGROUND: Spinocerebellar ataxia type 10 is a neurodegenerative disorder caused by the expansion of an ATTCT pentanucleotide repeat. Its clinical features include ataxia and, in some cases, epileptic seizures. There is, however, a dearth of information about its cognitive deficits and the neural bases underpinning them. OBJECTIVES: The objectives of this study were to characterize the performance of spinocerebellar ataxia type 10 patients in 2 cognitive domains typically affected in spinocerebellar ataxias, memory and executive function, and to correlate the identified cognitive impairments with ataxia severity and cerebral/cerebellar cortical thickness, as quantified by MRI. METHODS: Memory and executive function tests were administered to 17 genetically confirmed Mexican spinocerebellar ataxia type 10 patients, and their results were compared with 17 healthy matched volunteers. MRI was performed in 16 patients. RESULTS: Patients showed deficits in visual and visuospatial short-term memory, reduced storage capacity for verbal memory, and impaired monitoring, planning, and cognitive flexibility, which were ataxia independent. Patients with seizures (n = 9) and without seizures (n = 8) did not differ significantly in cognitive performance. There were significant correlations between short-term visuospatial memory impairment and posterior cerebellar lobe cortical thickness (bilateral lobule VI, IX, and right X). Cognitive flexibility deficiencies correlated with cerebral cortical thickness in the left middle frontal, cingulate, opercular, and temporal gyri. Cerebellar cortical thickness in several bilateral regions was correlated with motor impairment. CONCLUSIONS: Patients with spinocerebellar ataxia type 10 show significant memory and executive dysfunction that can be correlated with deterioration in the posterior lobe of the cerebellum and prefrontal, cingulate, and middle temporal cortices. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Disfunção Cognitiva , Ataxias Espinocerebelares , Cerebelo , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Testes Neuropsicológicos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genéticaRESUMO
Recent findings suggest a significant effect of the cerebellar circuit deterioration on the clinical manifestation of Huntington's disease, calling for a better understanding of the cerebellar degeneration in this disorder. Recent brain imaging analyses have provided conflicting results regarding the cerebellar changes during the progression of this disease. To help in resolving this controversy, we examined the cerebellar gray matter structural integrity from a cohort of HD patients. Whole brain voxel-based morphometry (VBM) and spatially unbiased atlas template of the human cerebellum (SUIT) analyses were done from T1-weighted brain images. Our results showed a significant cerebellar degeneration without any sign of volume increase. The highest cerebellar degeneration was identified in Crus I right lobule, Crus II bilaterally, and left VIIb, and left VIIIa lobules. The cerebellar degeneration signature, which controls for severity of degeneration, showed a degeneration pattern that included regions I-IV, Crus II, VIIb, VIIIa, VIIIb and X.
Assuntos
Doenças Cerebelares , Doença de Huntington , Doenças Neurodegenerativas , Cerebelo/diagnóstico por imagem , Substância Cinzenta , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Imageamento por Ressonância MagnéticaRESUMO
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease characterized by progressive ataxia and retinal degeneration. Previous cross-sectional studies show a significant decrease in the gray matter of the cerebral cortex, cerebellum, and brainstem. However, there are no longitudinal studies in SCA7 analyzing whole-brain degeneration and its relation to clinical decline. To perform a 2-year longitudinal characterization of the whole-brain degeneration and clinical decline in SCA7, twenty patients underwent MRI and clinical evaluations at baseline. Fourteen completed the 2-year follow-up study. A healthy-matched control group was also included. Imaging analyses included volumetric and cortical thickness evaluation. We measured the cognitive deterioration in SCA7 patients using MoCA test and the motor deterioration using the SARA score. We found statistically significant differences in the follow-up compared to baseline. Imaging analyses showed that SCA7 patients had severe cerebellar and pontine degeneration compared with the control group. Longitudinal follow-up imaging analyses of SCA7 patients showed the largest atrophy in the medial temporal lobe without signs of a progression of cerebellar and pontine atrophy. Effect size analyses showed that MRI longitudinal analysis has the largest effect size followed by the SARA scale and MoCA test. Here, we report that it is possible to detect significant brain atrophy and motor and cognitive clinical decline in a 2-year follow-up study of SCA7 patients. Our results support the hypothesis that longitudinal analysis of structural MRI and MOCA tests are plausible clinical markers to study the natural history of the disease and to design treatment trials in ecologically valid contexts.
Assuntos
Substância Cinzenta/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Ataxias Espinocerebelares/diagnóstico por imagem , Adolescente , Adulto , Atrofia , Encéfalo/patologia , Encéfalo/fisiopatologia , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Progressão da Doença , Feminino , Seguimentos , Substância Cinzenta/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Doenças Neurodegenerativas/fisiopatologia , Ponte/diagnóstico por imagem , Ataxias Espinocerebelares/fisiopatologia , Aprendizagem Verbal , Adulto JovemRESUMO
Huntington's disease (HD) is an inherited neurodegenerative disease with clinical manifestations that involve motor, cognitive and psychiatric deficits. Cross-sectional magnetic resonance imaging (MRI) studies have described the main cortical and subcortical macrostructural atrophy of HD. However, longitudinal studies characterizing progressive atrophy are lacking. This study aimed to describe the cortical and subcortical gray matter atrophy using complementary volumetric and surface-based MRI analyses in a cohort of seventeen early HD patients in a cross-sectional and longitudinal analysis and to correlate the longitudinal volumetric atrophy with the functional decline using several clinical measures. A group of seventeen healthy individuals was included as controls. After obtaining structural MRIs, volumetric analyses were performed in 36 cortical and 7 subcortical regions of interest per hemisphere and surface-based analyses were performed in the whole cortex, caudate, putamen and thalamus. Cross-sectional cortical surface-based and volumetric analyses showed significant decreases in frontoparietal and temporo-occipital cortices, while subcortical volumetric analysis showed significant decreases in all subcortical structures except the hippocampus. The longitudinal surface-based analysis showed widespread cortical thinning with volumetric decreases in the superior frontal lobe, while a subcortical volumetric decrease occurred in the caudate, putamen and thalamus with shape deformation on the anterior, medial and dorsal side. Functional capacity and motor status decline correlated with caudate progressive atrophy, while cognitive decline correlated with left superior frontal and right paracentral progressive atrophy. These results provide new insights into progressive volumetric and surface-based morphometric atrophy of gray matter in HD.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Atrofia/patologia , Encéfalo/patologia , Estudos Transversais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/patologiaRESUMO
Spinocerebellar Ataxia Type 7 (SCA7) is a neurodegenerative disorder caused by cytosine-adenine-guanine (CAG) repeat expansion. It is clinically characterized by ataxia and visual loss. To date, little is known about SCA7 cognitive impairments and its relationship with grey matter volume (GMV) changes. The aim of this study was to explore SCA7 patients' performance in specific components of auditory-verbal neuropsychological tests and to correlate their scores with genetic mutation, severity of ataxia and GMV. We assessed verbal memory and verbal fluency proficiencies in 31 genetically confirmed SCA7 patients, and compared their results with 32 healthy matched volunteers; we also correlated CAG repeats and severity of motor symptoms with performance in the auditory-verbal tests. SCA7 patients exhibited deficiencies in several components of these cognitive tasks, which were independent of motor impairments and showed no relation to CAG repeats. Based on Resonance Images performed in 27 patients we found association between ataxia severity and GMV in "sensoriomotor" cerebellum, as well as correlations of impaired verbal memory and semantic fluency scores with GMV in association cortices, including the right parahippocampal gyrus. To our knowledge, this is the first report of deficits in the organization of semantic information and in the evocation of verbal material, as well as greater susceptibility to proactive interference in SCA7 patients. These findings bring novel information about specific cognitive abilities in SCA7 patients, particularly verbal memory and fluency, and their relation with GMV variations in circumscribed brain regions, including association cortices known to have functional relationships with the cerebellum.
Assuntos
Córtex Cerebelar/patologia , Córtex Cerebral/patologia , Disfunção Cognitiva/fisiopatologia , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Adulto , Córtex Cerebelar/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Giro Para-Hipocampal/diagnóstico por imagem , Giro Para-Hipocampal/patologia , Índice de Gravidade de Doença , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Aprendizagem Verbal/fisiologiaRESUMO
OBJECTIVES: The aim of this study was to explore the relationship between cognitive and white matter deterioration in a group of participants with spinocerebellar ataxia type 2 (SCA2). METHODS: Fourteen genetically confirmed participants with SCA2 and 14 aged-matched controls participated in the study. Diffusion tensor imaging tract-based spatial statistics were performed to analyze structural white matter integrity. Significant group differences in the mean diffusivity were correlated with SCA2 cognitive deficits. RESULTS: Our analysis revealed higher mean diffusivity in the SCA2 group in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Cognitive scores correlated with white matter mean diffusivity in the parahippocampal area, inferior frontal and supramarginal gyri and the stria terminalis. CONCLUSIONS: Our findings show significant correlations between white matter microstructural damage in key areas affected in SCA2 and cognitive deficits. These findings result in a more comprehensive understanding of the effect of the neurodegenerative process in people with SCA2.
Assuntos
Transtornos Cognitivos/etiologia , Leucoencefalopatias/etiologia , Ataxias Espinocerebelares/complicações , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Transtornos Cognitivos/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Leucoencefalopatias/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/patologia , Estatística como Assunto , Substância Branca/diagnóstico por imagem , Adulto JovemRESUMO
BACKGROUND: Several neuropathological studies in spinocerebellar ataxia type 2 (SCA2) have revealed significant atrophy of the cerebellum, brainstem, sensorimotor cortex, and several regions in the frontal lobe. However, the impact of the neurodegeneration on the functional integration of the remaining tissue is unknown. To analyze the clinical impact of these functional changes, we correlated the abnormal functional connectivity found in SCA2 patients with their scores in clinical scales. To obtain the functional connectivity changes, we followed two approaches. In one we used areas with significant cerebellar gray matter atrophy as anchor seeds, and in the other we performed a whole-brain data-driven analysis. METHODS: Fourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Voxel-based morphometry and resting-state functional magnetic resonance imaging (fMRI) were done to analyze structural and functional brain changes. Independent component analysis and dual regression were used for intrinsic network comparison. Significant functional connectivity differences were correlated with the behavioral scores. RESULTS: Seed-based analysis found reduced functional connectivity within the cerebellum and between the cerebellum and frontal/parietal cortices. Cerebellar functional connectivity increases were found with parietal, frontal, and temporal areas. Intrinsic network analysis found a functional decrease in the cerebellar network, and increase in the default-mode and fronto-parietal networks. Further analysis showed significant correlations between clinical scores and the abnormal functional connectivity strength. CONCLUSION: Our findings show significant correlations between functional connectivity changes in key areas affected in SCA2 and these patients' motor and neuropsychological impairments, adding an important insight to our understanding of the pathophysiology of SCA2.
Assuntos
Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Desempenho Psicomotor/fisiologia , Ataxias Espinocerebelares/fisiopatologia , Adulto , Transtornos Cognitivos/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/complicaçõesRESUMO
Our goal was to improve spinocerebellar ataxia type 2 (SCA2) cognitive profile characterization by testing the hypothesis that strategy, planning and rule acquisition capacities are affected in SCA2. Forty one patients with SCA2 were evaluated with the Spatial Working Memory (SWM), the Stockings of Cambridge (SOC), and the Intra-Extra Dimensional Shift (IED) tests of the Executive module of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). Paired Associates Learning (PAL) and Delayed Matching to Sample (DMS) from the CANTAB memory module were also assessed to corroborate previous findings. Motor deterioration was measured using the Scale for the Assessment and Rating of Ataxia (SARA). We found significant SCA2 related deficits in strategy, planning, and rule acquisition. Our results also corroborated significant memory deficits in these patients with SCA2. Further analysis also showed that patients with large motor deterioration had poorer associative learning and spatial planning scores. Patients with SCA2 show strategy, planning, and rule acquisition deficits as revealed with the CANTAB battery. These deficits should be noted when planning an effective therapy for these patients.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtornos Cognitivos/etiologia , Transtornos da Memória/etiologia , Ataxias Espinocerebelares/complicações , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtornos Cognitivos/diagnóstico , Expansão das Repetições de DNA/genética , Feminino , Humanos , Masculino , Transtornos da Memória/diagnóstico , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Atividade Motora , Testes Neuropsicológicos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/genética , Adulto JovemRESUMO
The prodromal phase of spinocerebellar ataxias (SCAs) has not been systematically studied. Main findings come from a homogeneous SCA type 2 (SCA2) population living in Cuba. The aim of this study was to characterize extensively the prodromal phase of SCA2 by several approaches. Thirty-seven non-ataxic SCA2 mutation carriers and its age- and sex-matched controls underwent clinical assessments, including standardized neurological exam, structured interviews and clinical scales, and looking for somatic and autonomic features, as well as a neuropsychological battery, antisaccadic recordings, and MRI scans. Main clinical somatic features of non-ataxic mutation carriers were cramps, sensory symptoms, sleep disorders, and hyperreflexia, whereas predominating autonomic symptoms were pollakiuria/nocturia, constipation, and frequent throat clearing. Cognitive impairments included early deficits of executive functions and visual memory, suggesting the involvement of cerebro-cerebellar-cerebral loops and/or reduced cholinergic basal forebrain input to the cortex. Antisaccadic task revealed impaired oculomotor inhibitory control but preserved ability for error correction. Cognitive and antisaccadic deficits were higher as carriers were closer to the estimated onset of ataxia, whereas higher Scale for the Assessment and Rating of Ataxia (SARA) scores were associated most notably to vermis atrophy. The recognition of early features of SCA2 offers novel insights into the prodromal phase and physiopathological base of the disease, allowing the assessment of its progression and the efficacy of treatments, in particular at early phases when therapeutical options should be most effective.
Assuntos
Ataxias Espinocerebelares/epidemiologia , Ataxias Espinocerebelares/fisiopatologia , Adulto , Idoso , Ataxinas , Encéfalo/patologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Cuba/epidemiologia , Medições dos Movimentos Oculares , Feminino , Humanos , Entrevistas como Assunto , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Tecido Nervoso/genética , Exame Neurológico , Testes Neuropsicológicos , Sintomas Prodrômicos , Movimentos Sacádicos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Adulto JovemRESUMO
Visuomotor adaptation is often driven by error-based (EB) learning in which signed errors update motor commands. There are, however, visuomotor tasks where signed errors are unavailable or cannot be mapped onto appropriate motor command changes, rendering EB learning ineffective; and yet, healthy subjects can learn in these EB learning-free conditions. While EB learning depends on cerebellar integrity, the neural bases of EB-independent learning are poorly understood. As basal ganglia are involved in learning mechanisms that are independent of signed error feedback, here we tested whether patients with basal ganglia lesions, including those with Huntington's disease and Parkinson's disease, would show impairments in a visuomotor learning task that prevents the use of EB learning. We employed two visuomotor throwing tasks that were similar, but were profoundly different in the resulting visual feedback. This difference was implemented through the introduction of either a lateral displacement of the visual field via a wedge prism (EB learning) or a horizontal reversal of the visual field via a dove prism (non-EB learning). Our results show that patients with basal ganglia degeneration had normal EB learning in the wedge prism task, but were profoundly impaired in the reversing prism task that does not depend on the signed error signal feedback. These results represent the first evidence that human visuomotor learning in the absence of EB feedback depends on the integrity of the basal ganglia.
Assuntos
Gânglios da Base/fisiopatologia , Doença de Huntington/fisiopatologia , Aprendizagem/fisiologia , Doença de Parkinson/fisiopatologia , Desempenho Psicomotor , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder characterized by progressive ataxia and retinal dystrophy. It is caused by a CAG trinucleotide expansion in the ataxin7 gene. Anatomical studies have shown severe cerebellar degeneration and region-specific neocortical atrophy in SCA7 patients. However, the impact of the neurodegeneration on the functional integration of the remaining tissue is still unknown. The aim of this study was to examine functional connectivity abnormalities in areas with significant gray matter atrophy in SCA7 patients and their relationship with number of CAG repeats. Using a combination of voxel-based morphometry and resting-state fMRI, we studied 26 genetically confirmed SCA7 patients and aged-matched healthy controls. In SCA7 patients we found reduced functional interaction between the cerebellum and the middle and superior frontal gyri, disrupted functional connectivity between the visual and motor cortices, and increased functional coordination between atrophied areas of the cerebellum and a range of visual cortical areas compared with healthy controls. The degree of mutation expansion showed a negative effect on both the functional interaction between the right anterior cerebellum and the left superior frontal gyrus and the connectivity between the right anterior cerebellum and left parahippocampal gyrus. We found abnormal functional connectivity patterns, including both hypo- and hyperconnectivity, compared with controls. These abnormal patterns show reasonable association with the severity of gene mutation. Our findings suggest that aberrant changes are prevalent in both motor and visual systems, adding significantly to our understanding of the pathophysiology of SCA7.
Assuntos
Cerebelo/fisiopatologia , Vias Eferentes/fisiopatologia , Lobo Frontal/fisiopatologia , Rede Nervosa/fisiopatologia , Ataxias Espinocerebelares/fisiopatologia , Vias Visuais/fisiopatologia , Adulto , Atrofia/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologiaRESUMO
There are different types of visuomotor learning. Among the most studied is motor error-based learning where the sign and magnitude of the error are used to update motor commands. However, there are other instances where individuals show visuomotor learning even if the sign or magnitude of the error is precluded. Studies with patients suggest that the former learning is impaired after cerebellar lesions, while basal ganglia lesions disrupt the latter. Nevertheless, the cerebellar role is not restricted only to error-based learning, but it also contributes to several cognitive processes. Therefore, here, we tested if cerebellar ataxia patients are affected in two tasks, one that depends on error-based learning and the other that prevents the use of error-based learning. Our results showed that cerebellar patients have deficits in both visuomotor tasks; however, while error-based learning tasks deficits correlated with the motor impairments, the motor error-dependent task did not correlate with any motor measure.
Assuntos
Deficiências da Aprendizagem/etiologia , Atividade Motora/fisiologia , Transtornos da Percepção/etiologia , Desempenho Psicomotor/fisiologia , Ataxias Espinocerebelares/complicações , Percepção Visual/fisiologia , Adaptação Fisiológica , Adulto , Gânglios da Base/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Campos Visuais/fisiologiaRESUMO
While sensorimotor adaptation to prisms that displace the visual field takes minutes, adapting to an inversion of the visual field takes weeks. In spite of a long history of the study, the basis of this profound difference remains poorly understood. Here, we describe the computational issue that underpins this phenomenon and presents experiments designed to explore the mechanisms involved. We show that displacements can be mastered without altering the updated rule used to adjust the motor commands. In contrast, inversions flip the sign of crucial variables called sensitivity derivatives-variables that capture how changes in motor commands affect task error and therefore require an update of the feedback learning rule itself. Models of sensorimotor learning that assume internal estimates of these variables are known and fixed predicted that when the sign of a sensitivity derivative is flipped, adaptations should become increasingly counterproductive. In contrast, models that relearn these derivatives predict that performance should initially worsen, but then improve smoothly and remain stable once the estimate of the new sensitivity derivative has been corrected. Here, we evaluated these predictions by looking at human performance on a set of pointing tasks with vision perturbed by displacing and inverting prisms. Our experimental data corroborate the classic observation that subjects reduce their motor errors under inverted vision. Subjects' accuracy initially worsened and then improved. However, improvement was jagged rather than smooth and performance remained unstable even after 8 days of continually inverted vision, suggesting that subjects improve via an unknown mechanism, perhaps a combination of cognitive and implicit strategies. These results offer a new perspective on classic work with inverted vision.
Assuntos
Adaptação Fisiológica/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , RotaçãoRESUMO
Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Doença de Huntington/complicações , Doenças Neurodegenerativas/complicações , Afinamento Cortical Cerebral , Testes de Estado Mental e Demência , Atrofia/complicaçõesRESUMO
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder characterized by cerebellar ataxia and visual loss. It is caused by a CAG repeat expansion in the gene encoding the ataxin 7 protein. Visual loss is due to a progressive atrophy of photoreceptor cells that results in macular degeneration in more advanced stages. Initial semiautomatic measures in magnetic resonance imaging (MRI) studies on the brain stem have shown a diminished volume mainly in the cerebellum and pons, while T2 images have shown hyperintensities in transverse fibers at the pons. Neuropathological research, however, has shown more widespread brain damage including loss of myelinated fibers. In this study we decided to take advantage of recent MRI methodological advances to further explore the gray and white matter changes that occur in SCA7 patients. We studied nine genetically confirmed SCA7 patients and their matched controls using voxel based morphometry and tract-based spatial statistics. As expected, we found significant bilateral gray matter volume reductions (p<0.05, corrected for multiple comparisons) in patients' cerebellar cortex. However, we also found significant bilateral gray matter reductions in pre and postcentral gyrus, inferior and medial frontal, parietal inferior, parahippocampal and occipital cortices. The analysis also showed a decrement in fractional anisotropy (p<0.05, corrected) of SCA7 patients in the cerebellum's white matter, brainstem, cerebellar and cerebral peduncles, midbrain, anterior and posterior internal capsule, external/extreme capsule, corpus callosum, corona radiata, optical radiations, and the occipital, temporal and frontal lobe's white matter. These results confirm previous evidence of widespread damage beyond the cerebellum and the pons in SCA7 patients. They also confirmed previous results that had been only detectable through neuropathological analyses and, more importantly, identified new regions affected by the disease that previous methods could not detect. These new results could help explain the symptom's spectrum that affects these patients.
Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/patologia , Neurônios/patologia , Ataxias Espinocerebelares/patologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND AND PURPOSE: Myotonic Dystrophy Type I (DM1) is a neurodegenerative, genetic, and multisystemic disorder with a large variety of symptoms due to a CTG trinucleotide expansion located on Dystrophia Myotonica Protein Kinase (DMPK) gene. Previous reports have shown cognitive deterioration in these patients. Given that white matter (WM) degradation has also been reported in DM1 patients, here we explored if alterations in the cognitive profile of DM1 patients could be related to the deterioration of WM. METHODS: A total of 22 classic DM1 patients with age range (18-56 years) and 22 matched healthy control subjects were neuropsychological evaluated by the Cambridge Neuropsychological Test Automated (CANTAB). Patients were evaluated with the Muscular Impairment Rating Scale (MIRS). We then evaluated the cerebral WM integrity using the Fractional Anisotropy (FA) index obtained from the Diffusion Tensor Imaging (DTI) data acquired with a 3T MR scanner. RESULTS: DM1 patients showed generalized reduction of WM integrity across the brain. Similarly, patients' neuropsychological evaluation showed significant deficits in memory and problem-solving tasks. Correlation analyses showed a significant correlation between FA deterioration at frontal, temporomedial, and parietal lobes and delayed matched to sample deficits. CONCLUSIONS: Our results suggest that despite the pervasive WM integrity loss in DM1 disorder, specific memory impairments can be associated to discreet areas of WM deterioration in these patients.
Assuntos
Disfunção Cognitiva/complicações , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Substância Branca/patologia , Adolescente , Adulto , Anisotropia , Imagem de Tensor de Difusão , Humanos , Masculino , Memória , Pessoa de Meia-Idade , Distrofia Miotônica/complicações , Distrofia Miotônica/diagnóstico por imagem , Testes Neuropsicológicos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia , Adulto JovemRESUMO
Gender differences have been shown across many domains, and motor skills are no exception. One of the most robust findings is a significant sex difference in throwing accuracy, which reflects the advantage of men in targeting abilities. However, little is known about the basis of this difference. To try to dissect possible mechanisms involved in this difference, here we tested for gender variations in a prism adaptation throwing task. We tested 154 subjects in a visuomotor prism adaptation task that discriminates between motor performance, visuomotor adaptation and negative aftereffects. Our results corroborate men's significant better throwing accuracy, although there were no adaptation differences between genders. In contrast, women showed significant larger negative aftereffects, which could be explained by a larger contribution of spatial alignment. These results suggest that different learning mechanisms, like strategic calibration and spatial alignment, may have different contributions in men and women.
Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Caracteres Sexuais , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Comportamento Espacial/fisiologia , Percepção Visual/fisiologiaRESUMO
Purpose: Developmental coordination disorder (DCD) is characterized by poor coordination and clumsiness in children. Subjects often show unsteady gait, frequent tripping, and difficulty holding objects. Here we evaluated the implicit and explicit motor learning capabilities of children with DCD. Method: We assessed a total of 80 children (4-12 years old). These children were divided into two groups of 40 participants each. One group with DCD diagnosis and a control group. Using a prism adaptation paradigm, we evaluated whether DCD affects procedural visuomotor adaptation. This adaptation typically occurs during the laterally displacing prism adaptation task. We contrasted these results with the performance during a reversing prism adaptation task, which mainly places demands on strategic visuomotor learning. To solve both adaptation tasks, subjects must perform the same movements, but using two completely different approaches. Results: There was a significant variable error difference between groups, confirming a motor control deficit in individuals with DCD. This group also showed significant visuomotor learning deficits in the displacing task, including less adaptation and smaller aftereffect. The analysis on the reversing task revealed a significant larger number of subjects with DCD that could not adapt, suggesting significant strategic visuomotor learning deficits in this group too. Conclusions: These results demonstrate procedural and strategic visuomotor deficits in this sample of children with DCD.