RESUMO
BACKGROUND: Our aim was to determine associations of pachymetry, keratometry, and their changes with haze formation and corneal flattening after collagen cross-linking, and to analyse the relationship between postoperative haze and visual outcome. METHODS: Retrospective analysis was performed on 47 eyes of 47 patients with keratoconus using the Pentacam HR Scheimpflug camera before and 1, 3, 6 and 12 months after cross-linking. Corneal backscattered light values in grey scale unit were recorded in the anterior, center and posterior corneal layers and in four concentric rings. Surface area- and thickness-corrected grey scale unit values were assessed with an additional calculation. Friedman test with post hoc Wilcoxon signed-rank test was used to analyse changes in visual acuity, pachymetry, keratometry and densitometry. Spearman's rank correlation test was used to detect correlations of haze formation and corneal flattening with pachymetry, keratometry and their postoperative change. Generalized estimating equations analysis was used to investigate the influence of densitometry values on postoperative visual acuity after controlling for the effect of preoperative keratometry. RESULTS: One year after treatment, significant flattening was observed in maximum and mean keratometry readings (p < 0.001). Significantly increased densitometry values were observed in three central rings compared to baseline (post hoc p < 0.0125). According to receiver operating characteristic curve, densitometry value of the anterior layer of 0-2 mm ring was the most characteristic parameter of densitometry changes after cross-linking (area under the curve = 0.936). Changes in haze significantly correlated with preoperative maximum keratometry (R = 0.303, p = 0.038) and with the changes in maximum keratometry (R = -0.412, p = 0.004). Changes in maximum keratometry correlated with preoperative maximum keratometry (R = -0.302, p = 0.038). Postoperative haze had a significant impact on uncorrected and best corrected distance visual acuity (ß coefficient = 0.006, p = 0.041 and ß coefficient = 0.003, p = 0.039, respectively). CONCLUSIONS: Our findings indicate that in more advanced keratoconus more significant corneal flattening effect parallel with haze formation can be observed after cross-linking. Despite significant reduction of keratometry, postoperative corneal haze may limit final visual acuity.
Assuntos
Substância Própria , Fármacos Fotossensibilizantes , Colágeno , Topografia da Córnea , Reagentes de Ligações Cruzadas , Humanos , Estudos Retrospectivos , Raios Ultravioleta , Acuidade VisualRESUMO
Stromules are highly dynamic protrusions of the plastids in plants. Several factors, such as drought and light conditions, influence the stromule frequency (SF) in a positive or negative way. A relatively recently discovered class of plant hormones are the strigolactones; strigolactones inhibit branching of the shoots and promote beneficial interactions between roots and arbuscular mycorrhizal fungi. Here, we investigate the link between the formation of stromules and strigolactones. This research shows a strong link between strigolactones and the formation of stromules: SF correlates with strigolactone levels in the wild type and strigolactone mutants (max2-1 max3-9), and SF is stimulated by strigolactone GR24 and reduced by strigolactone inhibitor D2.
Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Lactonas/farmacologia , Fosfatos/farmacologia , Plastídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Galactolipídeos/metabolismo , Mutação/genética , Fosfolipídeos/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Plastídeos/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismoRESUMO
Electrospun nanofibers can be utilized to develop patient-centric ophthalmic formulations with reasonable bioavailability at the targeted site. The current study aimed to develop 0.1% w/w of nepafenac-loaded electrospun nanofibrous webs as potential candidates for ocular delivery of nepafenac with improved solubility and stability. Nine different formulations were prepared by electrospinning and investigated for morphology, physicochemical properties, drug release, cytocompatibility, and in vitro and ex vivo permeability. The scanning electron microscopy images showed fibrous samples. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the polymer cross-linking and the formation of amorphous solid dispersion. All formulations showed complete and fast release of nepafenac (≤ 60 minutes), and the release followed first-order kinetics (ß values for all formulations were <1). The formulations (F3, F6, and F9) showed considerable in vitro and ex vivo permeability. The Raman studies revealed comparable corneal distributions of F3 and the commercial Nevanac® suspension at 60 min (p value = 0.6433). The fibrous composition remains stable under stress conditions (40 ± 2 °C, 75 ± 5% relative humidity). The formulation composition showed good cytocompatibility with hen eggs tested on the chorioallantoic membrane of chick embryos. The developed nanofiber webs could be a promising candidate for nepafenac-loaded ophthalmic inserts. Chemical compounds studied in this article Nepafenac (PubChem CID151075); Polyvinyl alcohol (PubChem CID 11199); Poloxamer 407 (PubChem CID 24751); Chloroform (PubChem CID 6212); Methanol (PubChem CID 887); L-α-phosphatidylcholine (PubChem CID 10425706); Ethylenediaminetetraacetic acid (PubChem CID 6049).