Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098343

RESUMO

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Anticorpos/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , DNA de Cadeia Simples , Mutação , Evolução Molecular , Regiões Determinantes de Complementaridade/genética , Motivos de Nucleotídeos
2.
Nature ; 632(8024): 383-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048823

RESUMO

The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.


Assuntos
Fatores de Restrição Antivirais , Encéfalo , Herpes Simples , Herpesvirus Humano 1 , Proteínas de Membrana , Neurônios , Internalização do Vírus , Replicação Viral , Animais , Feminino , Humanos , Masculino , Camundongos , Fatores de Restrição Antivirais/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Morte Celular , Sistemas CRISPR-Cas/genética , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Neurônios/virologia , Neurônios/metabolismo , Carga Viral , Nectinas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Interferon Tipo I , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/virologia
3.
Proc Natl Acad Sci U S A ; 121(37): e2403421121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226350

RESUMO

Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Mycobacterium tuberculosis , Rifampina , Rifampina/farmacologia , Rifampina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Modelos Moleculares , Adenilil Imidodifosfato/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252995

RESUMO

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Assuntos
Mycobacterium tuberculosis , Humanos , Galactanos , Pentosiltransferases/genética
5.
Circulation ; 150(4): 283-298, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38752340

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.


Assuntos
Sistemas CRISPR-Cas , Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Cadeias Pesadas de Miosina , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Camundongos , Humanos , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Alelos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Terapia Genética/métodos
6.
Phys Chem Chem Phys ; 26(17): 13441-13451, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647259

RESUMO

Soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) catalyzes the glycosylation of asparagine residues, and represents one of the most encouraging biocatalysts for N-glycoprotein production. Since the sugar tolerance of ApNGT is restricted to limited monosaccharides (e.g., Glc, GlcN, Gal, Xyl, and Man), tremendous efforts are devoted to expanding the substrate scope of ApNGT via enzyme engineering. However, rational design of novel NGT variants suffers from an elusive understanding of the substrate-binding process from a dynamic point of view. Here, by employing extensive all-atom molecular dynamics (MD) simulations integrated with a kinetic model, we reveal, at the atomic level, the complete donor-substrate binding process from the bulk solvent to the ApNGT active-site, and the key intermediate states of UDP-Glc during its loading dynamics. We are able to determine the critical transition event that limits the overall binding rate, which guides us to pinpoint the key ApNGT residues dictating the donor-substrate entry. The functional roles of several identified gating residues were evaluated through site-directed mutagenesis and enzymatic assays. Two single-point mutations, N471A and S496A, could profoundly enhance the catalytic activity of ApNGT. Our work provides deep mechanistic insights into the structural dynamics of the donor-substrate loading process for ApNGT, which sets a rational basis for design of novel NGT variants with desired substrate specificity.


Assuntos
Actinobacillus pleuropneumoniae , Glicosiltransferases , Simulação de Dinâmica Molecular , Actinobacillus pleuropneumoniae/enzimologia , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/genética , Cinética , Especificidade por Substrato , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Mutagênese Sítio-Dirigida , Domínio Catalítico
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1118-1129, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066577

RESUMO

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicosilação , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células HEK293 , SARS-CoV-2/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/genética , Polissacarídeos/metabolismo , Polissacarídeos/química , Polipeptídeo N-Acetilgalactosaminiltransferase , Simulação de Dinâmica Molecular , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Multimerização Proteica , COVID-19/virologia , COVID-19/metabolismo
8.
Angew Chem Int Ed Engl ; 63(36): e202408345, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888253

RESUMO

Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.

9.
Biophys J ; 122(9): 1665-1677, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36964657

RESUMO

Major histocompatibility complex class II (MHC-II) plays an indispensable role in activating CD4+ T cell immune responses by presenting antigenic peptides on the cell surface for recognition by T cell receptors. The assembly of MHC-II and antigenic peptide is therefore a prerequisite for the antigen presentation. To date, however, the atomic-level mechanism underlying the peptide-loading dynamics for MHC-II is still elusive. Here, by constructing Markov state models based on extensive all-atom molecular dynamics simulations, we reveal the complete peptide-loading dynamics into MHC-II for one SARS-CoV-2 S-protein-derived antigenic peptide (235ITRFQTLLALHRSYL249). Our Markov state model identifies six metastable states (S1-S6) during the peptide-loading process and determines two dominant loading pathways. The peptide could potentially approach the antigen-binding groove via either its N- or C-terminus. Then, the consecutive insertion of several anchor residues into the binding pockets profoundly dictates the peptide-loading dynamics. Notably, the MHC-II αA52-E55 motif could guide the peptide loading into the antigen-binding groove via forming ß-sheets conformation with the incoming peptide. The rate-limiting step, namely S5→S6, is mainly attributed to a considerable desolvation penalty triggered by the binding of the peptide C-terminus. Moreover, we further examined the conformational changes associated with the peptide exchange process catalyzed by the chaperon protein HLA-DM. A flipped-out conformation of MHC-II αW43 captured in S1-S3 is considered a critical anchor point for HLA-DM to modulate the structural dynamics. Our work provides deep structural insights into the key regulatory factors in MHC-II responsible for peptide recognition and guides future design for peptide vaccines against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/química , Ligação Proteica
10.
J Chem Inf Model ; 63(2): 605-618, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36607244

RESUMO

Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of ß2 integrin. The phosphorylation on threonine 758 of ß2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.


Assuntos
Antígenos CD18 , Simulação de Dinâmica Molecular , Antígenos CD18/química , Antígenos CD18/genética , Antígenos CD18/metabolismo , Filaminas/química , Filaminas/metabolismo , Fosforilação
11.
Nucleic Acids Res ; 49(3): 1278-1293, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33469643

RESUMO

Thymine DNA glycosylase (TDG), as a repair enzyme, plays essential roles in maintaining the genome integrity by correcting several mismatched/damaged nucleobases. TDG acquires an efficient strategy to search for the lesions among a vast number of cognate base pairs. Currently, atomic-level details of how TDG translocates along DNA as it approaches the lesion site and the molecular mechanisms of the interplay between TDG and DNA are still elusive. Here, by constructing the Markov state model based on hundreds of molecular dynamics simulations with an integrated simulation time of ∼25 µs, we reveal the rotation-coupled sliding dynamics of TDG along a 9 bp DNA segment containing one G·T mispair. We find that TDG translocates along DNA at a relatively faster rate when distant from the lesion site, but slows down as it approaches the target, accompanied by deeply penetrating into the minor-groove, opening up the mismatched base pair and significantly sculpturing the DNA shape. Moreover, the electrostatic interactions between TDG and DNA are found to be critical for mediating the TDG translocation. Notably, several uncharacterized TDG residues are identified to take part in regulating the conformational switches of TDG occurred in the site-transfer process, which warrants further experimental validations.


Assuntos
DNA/química , Timina DNA Glicosilase/química , DNA/metabolismo , Dano ao DNA , Simulação de Dinâmica Molecular , Movimento (Física) , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Timina DNA Glicosilase/metabolismo
12.
Nucleic Acids Res ; 49(8): 4506-4521, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849071

RESUMO

Repressor element-1 silencing transcription factor (REST) or neuron-restrictive silencer factor (NRSF) is a zinc-finger (ZF) containing transcriptional repressor that recognizes thousands of neuron-restrictive silencer elements (NRSEs) in mammalian genomes. How REST/NRSF regulates gene expression remains incompletely understood. Here, we investigate the binding pattern and regulation mechanism of REST/NRSF in the clustered protocadherin (PCDH) genes. We find that REST/NRSF directionally forms base-specific interactions with NRSEs via tandem ZFs in an anti-parallel manner but with striking conformational changes. In addition, REST/NRSF recruitment to the HS5-1 enhancer leads to the decrease of long-range enhancer-promoter interactions and downregulation of the clustered PCDHα genes. Thus, REST/NRSF represses PCDHα gene expression through directional binding to a repertoire of NRSEs within the distal enhancer and variable target genes.


Assuntos
Caderinas/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Dedos de Zinco , Animais , Caderinas/química , Caderinas/genética , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Simulação de Dinâmica Molecular , Família Multigênica , Ligação Proteica , Domínios Proteicos , RNA-Seq , Proteínas Repressoras/química , Proteínas Repressoras/genética
13.
J Chem Inf Model ; 62(13): 3213-3226, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35708296

RESUMO

Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.


Assuntos
DNA Glicosilases , Domínio Catalítico , DNA/química , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Humanos
14.
Phys Chem Chem Phys ; 24(20): 12397-12409, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575131

RESUMO

Major histocompatibility complex class I (MHC-I) molecules display antigenic peptides on the cell surface for T cell receptor scanning, thereby activating the immune response. Peptide loading into MHC-I molecules is thus a critical step during the antigen presentation process. Chaperone TAP-binding protein related (TAPBPR) plays a critical role in promoting high-affinity peptide loading into MHC-I, by discriminating against the low-affinity ones. However, the complete peptide loading dynamics into TAPBPR-bound MHC-I is still elusive. Here, we constructed kinetic network models based on hundreds of short-time MD simulations with an aggregated simulation time of ∼21.7 µs, and revealed, at atomic level, four key intermediate states of one antigenic peptide derived from melanoma-associated MART-1/Melan-A protein during its loading process into TAPBPR-bound MHC-I. We find that the TAPBPR binding at the MHC-I pocket-F can substantially reshape the distant pocket-B via allosteric regulations, which in turn promotes the following peptide N-terminal loading. Intriguingly, the partially loaded peptide could profoundly weaken the TAPBPR-MHC stability, promoting the dissociation of the TAPBPR scoop-loop (SL) region from the pocket-F to a more solvent-exposed conformation. Structural inspections further indicate that the peptide loading could remotely affect the SL binding site through both allosteric perturbations and direct contacts. In addition, another structural motif of TAPBPR, the jack hairpin region, was also found to participate in mediating the peptide editing. Our study sheds light on the detailed molecular mechanisms underlying the peptide loading process into TAPBPR-bound MHC-I and pinpoints the key structural factors responsible for dictating the peptide-loading dynamics.


Assuntos
Proteínas de Transporte , Imunoglobulinas , Proteínas de Transporte/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/química , Chaperonas Moleculares , Peptídeos/química , Ligação Proteica
15.
Acta Biochim Biophys Sin (Shanghai) ; 54(6): 796-806, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35593467

RESUMO

DNA glycosylase, as one member of DNA repair machineries, plays an essential role in correcting mismatched/damaged DNA nucleotides by cleaving the N-glycosidic bond between the sugar and target nucleobase through the base excision repair (BER) pathways. Efficient corrections of these DNA lesions are critical for maintaining genome integrity and preventing premature aging and cancers. The target-site searching/recognition mechanisms and the subsequent conformational dynamics of DNA glycosylase, however, remain challenging to be characterized using experimental techniques. In this review, we summarize our recent studies of sequential structural changes of thymine DNA glycosylase (TDG) during the DNA repair process, achieved mostly by molecular dynamics (MD) simulations. Computational simulations allow us to reveal atomic-level structural dynamics of TDG as it approaches the target-site, and pinpoint the key structural elements responsible for regulating the translocation of TDG along DNA. Subsequently, upon locating the lesions, TDG adopts a base-flipping mechanism to extrude the mispaired nucleobase into the enzyme active-site. The constructed kinetic network model elucidates six metastable states during the base-extrusion process and suggests an active role of TDG in flipping the intrahelical nucleobase. Finally, the molecular mechanism of product release dynamics after catalysis is also summarized. Taken together, we highlight to what extent the computational simulations advance our knowledge and understanding of the molecular mechanism underlying the conformational dynamics of TDG, as well as the limitations of current theoretical work.


Assuntos
Timina DNA Glicosilase , DNA/genética , Reparo do DNA , Nucleotídeos , Açúcares , Timina DNA Glicosilase/metabolismo
16.
Biophys J ; 120(15): 3126-3137, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197800

RESUMO

Cas1 and Cas2 are highly conserved proteins across clustered-regularly-interspaced-short-palindromic-repeat-Cas systems and play a significant role in protospacer acquisition. Based on crystal structure of twofold symmetric Cas1-Cas2 in complex with dual-forked protospacer DNA (psDNA), we conducted all-atom molecular dynamics simulations to study the psDNA binding, recognition, and response to cleavage on the protospacer-adjacent-motif complementary sequence, or PAMc, of Cas1-Cas2. In the simulation, we noticed that two active sites of Cas1 and Cas1' bind asymmetrically to two identical PAMc on the psDNA captured from the crystal structure. For the modified psDNA containing only one PAMc, as that to be recognized by Cas1-Cas2 in general, our simulations show that the non-PAMc association site of Cas1-Cas2 remains destabilized until after the stably bound PAMc being cleaved at the corresponding association site. Thus, long-range correlation appears to exist upon the PAMc cleavage between the two active sites (∼10 nm apart) on Cas1-Cas2, which can be allosterically mediated by psDNA and Cas2 and Cas2' in bridging. To substantiate such findings, we conducted repeated runs and further simulated Cas1-Cas2 in complex with synthesized psDNA sequences psL and psH, which have been measured with low and high frequency in acquisition, respectively. Notably, such intersite correlation becomes even more pronounced for the Cas1-Cas2 in complex with psH but remains low for the Cas1-Cas2 in complex with psL. Hence, our studies demonstrate that PAMc recognition and cleavage at one active site of Cas1-Cas2 may allosterically regulate non-PAMc association or even cleavage at the other site, and such regulation can be mediated by noncatalytic Cas2 and DNA protospacer to possibly support the ensued psDNA acquisition.


Assuntos
Proteínas Associadas a CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação Alostérica , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Escherichia coli/metabolismo
17.
Bioinformatics ; 36(19): 4894-4901, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592462

RESUMO

MOTIVATION: The mutations of cancers can encode the seeds of their own destruction, in the form of T-cell recognizable immunogenic peptides, also known as neoantigens. It is computationally challenging, however, to accurately prioritize the potential neoantigen candidates according to their ability of activating the T-cell immunoresponse, especially when the somatic mutations are abundant. Although a few neoantigen prioritization methods have been proposed to address this issue, advanced machine learning model that is specifically designed to tackle this problem is still lacking. Moreover, none of the existing methods considers the original DNA loci of the neoantigens in the perspective of 3D genome which may provide key information for inferring neoantigens' immunogenicity. RESULTS: In this study, we discovered that DNA loci of the immunopositive and immunonegative MHC-I neoantigens have distinct spatial distribution patterns across the genome. We therefore used the 3D genome information along with an ensemble pMHC-I coding strategy, and developed a group feature selection-based deep sparse neural network model (DNN-GFS) that is optimized for neoantigen prioritization. DNN-GFS demonstrated increased neoantigen prioritization power comparing to existing sequence-based approaches. We also developed a webserver named deepAntigen (http://yishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning methods. We believe that this work provides a new perspective toward more accurate neoantigen prediction which eventually contribute to personalized cancer immunotherapy. AVAILABILITY AND IMPLEMENTATION: Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/deepAntigen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Genoma , Humanos , Imunoterapia , Neoplasias/genética , Linfócitos T
18.
FASEB J ; 34(3): 3943-3955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944405

RESUMO

Mangrove-derived actinobacteria strains are well-known for producing novel secondary metabolites. The polycyclic tetramate macrolactam (PTM), ikarugamycin (IKA) isolated from Streptomyces xiamenensis 318, exhibits antiproliferative activities against pancreatic ductal adenocarcinoma (PDAC) in vitro. However, the protein target for bioactive IKA is unclear. In this study, whole transcriptome-based profiling revealed that the glycolysis pathway is significantly affected by IKA. Metabolomic studies demonstrated that IKA treatment induces a significant drop in glucose-6-phosphate and a slight increase in intracellular glucose level. Analysis of glucose consumption, lactate production, and the extracellular acidification rate confirmed the inhibitory role of IKA on the glycolytic flux in PDAC cells. Surface plasmon resonance (SPR) experiments and docking studies identified the key enzyme of glycolysis, hexokinase 2 (HK2), as a molecular target of IKA. Moreover, IKA reduced tumor size without overt cytotoxicity in mice with PDAC xenografts and increased chemotherapy response to gemcitabine in PDAC cells in vitro. Taken together, IKA can block glycolysis in pancreatic cancer by targeting HK2, which may be a potential drug candidate for PDAC treatment.


Assuntos
Hexoquinase/metabolismo , Lactamas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície
19.
Nucleic Acids Res ; 47(9): 4721-4735, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916310

RESUMO

An elongation cycle of a transcribing RNA polymerase (RNAP) usually consists of multiple kinetics steps, so there exist multiple kinetic checkpoints where non-cognate nucleotides can be selected against. We conducted comprehensive free energy calculations on various nucleotide insertions for viral T7 RNAP employing all-atom molecular dynamics simulations. By comparing insertion free energy profiles between the non-cognate nucleotide species (rGTP and dATP) and a cognate one (rATP), we obtained selection free energetics from the nucleotide pre-insertion to the insertion checkpoints, and further inferred the selection energetics down to the catalytic stage. We find that the insertion of base mismatch rGTP proceeds mainly through an off-path along which both pre-insertion screening and insertion inhibition play significant roles. In comparison, the selection against dATP is found to go through an off-path pre-insertion screening along with an on-path insertion inhibition. Interestingly, we notice that two magnesium ions switch roles of leave and stay during the dATP on-path insertion. Finally, we infer that substantial selection energetic is still required to catalytically inhibit the mismatched rGTP to achieve an elongation error rate ∼10-4 or lower; while no catalytic selection seems to be further needed against dATP to obtain an error rate ∼10-2.


Assuntos
Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral/genética , Trifosfato de Adenosina/genética , Bacteriófago T7/enzimologia , Guanosina Trifosfato/genética , Cinética , Simulação de Dinâmica Molecular , Nucleotídeos/genética , Especificidade por Substrato
20.
Biochem Biophys Res Commun ; 526(4): 953-959, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32291075

RESUMO

Knowledge of how DNA bending facilitates the target-base searching by Thymine DNA glycosylase (TDG) is of major importance for unraveling the recognition mechanism between DNA and TDG in DNA repair process. An atomic-level understanding of the initial encounter between TDG and DNA before base-flipping, however, is still elusive. Here, we employ all-atom molecular dynamics (MD) simulations with an integrated simulation time of ∼3 µs to investigate how TDG responses to different DNA bending conformations. By constructing several TDG-DNA complexes with varied DNA bend angles (ranging from ∼0° to 60°), we pinpoint the key TDG motifs responsible for recognizing certain DNA bending conformations. Particularly, several positively charged residues, i.e., Lys232, Lys240, and Lys246, are critical for the tight binding with DNA backbones. Importantly, the roll-angle patterns, rather than the tilt and twist angles, are found to be strongly correlated with the extent of DNA bending, which in turn, governs the TDG recognition. Further comparisons between the naked and TDG-bound DNA conformations reveal that the TDG binding can impose a substantial DNA deformation, resulting in profound roll-angle alterations. Our studies warrant further experimental validations and provide deep structural insights into the recognition mechanism between TDG and DNA during their initial encounter.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Timina DNA Glicosilase/química , Timina DNA Glicosilase/metabolismo , Motivos de Aminoácidos , Pareamento Incorreto de Bases , Sequência de Bases , DNA/química , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA