Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 53: 110199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406256

RESUMO

The current dataset brings raw compression test information of a vegetable-based polyurethane foam (PUF) exposed to different temperatures over different periods of time. Such experimental dataset can provide researchers with important information in the application of numerical and data-driven simulations. Also, it saves money and time once the experimental part is already available. At total, 90 compression tests were done following the ASTM D1621-16 standard with pictures for digital image correlation (DIC) being simultaneously acquired. The 90 specimens were divided in nine different ageing conditions. The foam was considered transversely isotropic, thus, 10 specimens for each condition were divided in two groups, five specimens for direction 1 and five for direction 3, where direction 3 is the foam expansion direction. The 3D DIC results show longitudinal and transverse strains from virtual extensometers. The results are available in .TRA and .csv files for the tests and DIC outputs, respectively. Also, the dataset brings the pictures used for DIC in .TIF format. It also brings the dimensions of each specimen prior to the test in .txt format. These results provide information for the calculation of major mechanical properties that can be freely used in finite element models for different and creative ways to simulate the ageing process of a vegetable-based PUF.

2.
Polymers (Basel) ; 15(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177128

RESUMO

Biodegradable polymers find applications in many market segments. The ability to meet mechanical requirements within a certain time range, after which it degrades and is naturally absorbed, can be used to produce short-term use products that can be easily disposable with less environmental impact. In the segment of medical devices used in regenerative medicine, these materials are used to produce temporary implants that are naturally assimilated by the human body, avoiding a removal surgery. However, the design of these temporary devices still presents great challenges, namely in the verification of the main requirement: the lifetime of the device, associated with the progressive loss of mechanical properties, until its complete erosion and assimilation. Thus, in this study, a numerical approach is proposed to simulate the polymeric device's mechanical behavior during its hydrolytic degradation by combining the hydrolysis kinetics, that depends on mechanical factors and promotes a decrease of molecular weight and consequent decrease of mechanical performance, and erosion, when molecular weight reaches a threshold value and the polymer becomes soluble and diffuses outward, resulting in mass loss and decreasing cross-sectional area, which also contributes to the mechanical performance reduction of the device. A phenomenological approach, using the combination of continuum-based hydrolytic damage for the evolution of mechanical properties that depends on the stress field and further removal of the degraded element (to simulate mass loss) was used. Both elastoplastic and hyperelastic constitutive models were applied on this study, where the material model parameters locally depend on the molecular weight.

3.
Polymers (Basel) ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050398

RESUMO

The aim of this work is to evaluate the changes in compression properties of a bio-based polyurethane foam after exposure to 90 °C for different periods of time, and to propose a method to extrapolate these results and use a numerical approach to predict the compression behaviour after degradation for untested conditions at different degradation times and temperatures. Bio-based polymers are an important sustainable alternative to oil-based materials. This is explained by the foaming process and the density along the material as it was possible to see in a digital image correlation analysis. After 60 days, stiffness was approximately decreased by half in both directions. The decrease in yield stress due to thermo-oxidative degradation had a minor effect in the foaming directions, changing from 352 kPa to 220 kPa after 60 days, and the transverse property was harshly impacted changing from 530 kPa to 265 kPa. The energy absorption efficiency was slightly affected by degradation. The simulation of the compression stress-strain curves were in accordance to the experimental data and made it possible to predict the changes in mechanical properties for intermediate periods of degradation time. The plateau stress for the unaged foam transverse to the foaming direction presented experimental and numerical values of 450 kPa and 470 kPa, respectively. In addition, the plateau stresses in specimens degraded for 40 days present very similar experimental and numerical results in the same direction, at 310 kPa and 300 kPa, respectively. Therefore, this paper presents important information regarding the life-span and degradation of a green PUF. It provides insights into how compression properties vary along degradation time as function of material operation temperature, according to the Arrhenius degradation equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA