Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(2): 958-981, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37801606

RESUMO

Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal ß-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.


Assuntos
Diatomáceas , Lipólise , Diatomáceas/metabolismo , Gotículas Lipídicas/metabolismo , Ecossistema , Ácido Eicosapentaenoico/metabolismo , Proteômica , Triglicerídeos/metabolismo
2.
Plant Cell Rep ; 37(10): 1401-1408, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167805

RESUMO

Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.


Assuntos
Diatomáceas/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Genoma , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
3.
Nucleic Acids Res ; 42(8): 5390-402, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24569350

RESUMO

A key issue when designing and using DNA-targeting nucleases is specificity. Ideally, an optimal DNA-targeting tool has only one recognition site within a genomic sequence. In practice, however, almost all designer nucleases available today can accommodate one to several mutations within their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator-like effector nucleases (TALEN). The analysis of >15 500 unique TALEN/DNA cleavage profiles allowed us to monitor the specificity gradient of the RVDs along a TALEN/DNA binding array and to present a specificity scoring matrix for RVD/nucleotide association. Furthermore, we report that TALEN can only accommodate a relatively small number of position-dependent mismatches while maintaining a detectable activity at endogenous loci in vivo, demonstrating the high specificity of these molecular tools. We thus envision that the results we provide will allow for more deliberate choices of DNA binding arrays and/or DNA targets, extending our engineering capabilities.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Aminoácidos/química , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Clivagem do DNA , Mutação , Análise Serial de Proteínas , Engenharia de Proteínas , Leveduras/genética
4.
Methods ; 69(2): 151-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25047178

RESUMO

TALEN is one of the most widely used tools in the field of genome editing. It enables gene integration and gene inactivation in a highly efficient and specific fashion. Although very attractive, the apparent simplicity and high success rate of TALEN could be misleading for novices in the field of gene editing. Depending on the application, specific TALEN designs, activity assessments and screening strategies need to be adopted. Here we report different methods to efficiently perform TALEN-mediated gene integration and inactivation in different mammalian cell systems including induced pluripotent stem cells and delineate experimental examples associated with these approaches.


Assuntos
Marcação de Genes/métodos , Genoma/genética , Ativação Transcricional/genética , Transfecção/métodos , Animais , Sequência de Bases , Linhagem Celular , Proteínas de Ligação a DNA/genética , Células HCT116 , Humanos , Dados de Sequência Molecular
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 2042-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004980

RESUMO

DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin ß (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.


Assuntos
DNA/química , Genoma , Sequências Hélice-Alça-Hélice , Calorimetria , Cristalografia por Raios X , Humanos
6.
BMC Mol Biol ; 15: 13, 2014 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-24997498

RESUMO

BACKGROUND: The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. RESULTS: In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. CONCLUSION: Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas Fúngicas/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Leveduras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Marcação de Genes/métodos , Loci Gênicos , Humanos , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Leveduras/genética
7.
Nature ; 456(7218): 107-11, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987743

RESUMO

Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA/genética , DNA/metabolismo , Engenharia Genética , Xeroderma Pigmentoso/genética , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Cristalografia por Raios X , DNA/química , Reparo do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/toxicidade , Estabilidade Enzimática , Humanos , Modelos Moleculares , Fosforilação , Multimerização Proteica , Especificidade por Substrato
8.
Nucleic Acids Res ; 40(13): 6367-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467209

RESUMO

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Assuntos
Efeitos da Posição Cromossômica , Enzimas de Restrição do DNA/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Marcação de Genes , Engenharia Genética , Genoma Humano , Humanos , Mutagênese
9.
J Biol Chem ; 287(36): 30139-50, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22740697

RESUMO

In this study, we asked whether CpG methylation could influence the DNA binding affinity and activity of meganucleases used for genome engineering applications. A combination of biochemical and structural approaches enabled us to demonstrate that CpG methylation decreases I-CreI DNA binding affinity and inhibits its endonuclease activity in vitro. This inhibition depends on the position of the methylated cytosine within the DNA target and was almost total when it is located inside the central tetrabase. Crystal structures of I-CreI bound to methylated cognate target DNA suggested a molecular basis for such inhibition, although the precise mechanism still has to be specified. Finally, we demonstrated that the efficacy of engineered meganucleases can be diminished by CpG methylation of the targeted endogenous site, and we proposed a rational design of the meganuclease DNA binding domain to alleviate such an effect. We conclude that although activity and sequence specificity of engineered meganucleases are crucial parameters, target DNA epigenetic modifications need to be considered for successful gene editions.


Assuntos
Ilhas de CpG , Metilação de DNA , Enzimas de Restrição do DNA/química , DNA/química , Epigênese Genética , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Células HEK293 , Humanos , Estrutura Terciária de Proteína
10.
J Biol Chem ; 287(46): 38427-32, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23019344

RESUMO

Within the past 2 years, transcription activator-like effector (TALE) DNA binding domains have emerged as the new generation of engineerable platform for production of custom DNA binding domains. However, their recently described sensitivity to cytosine methylation represents a major bottleneck for genome engineering applications. Using a combination of biochemical, structural, and cellular approaches, we were able to identify the molecular basis of such sensitivity and propose a simple, drug-free, and universal method to overcome it.


Assuntos
Citosina/química , Metilação de DNA , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Animais , Sequência de Bases , Células CHO , Cricetinae , DNA/genética , Epigênese Genética , Inativação Gênica , Engenharia Genética/métodos , Terapia Genética/métodos , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
11.
Nucleic Acids Res ; 39(2): 729-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846960

RESUMO

Homing endonucleases recognize long target DNA sequences generating an accurate double-strand break that promotes gene targeting through homologous recombination. We have modified the homodimeric I-CreI endonuclease through protein engineering to target a specific DNA sequence within the human RAG1 gene. Mutations in RAG1 produce severe combined immunodeficiency (SCID), a monogenic disease leading to defective immune response in the individuals, leaving them vulnerable to infectious diseases. The structures of two engineered heterodimeric variants and one single-chain variant of I-CreI, in complex with a 24-bp oligonucleotide of the human RAG1 gene sequence, show how the DNA binding is achieved through interactions in the major groove. In addition, the introduction of the G19S mutation in the neighborhood of the catalytic site lowers the reaction energy barrier for DNA cleavage without compromising DNA recognition. Gene-targeting experiments in human cell lines show that the designed single-chain molecule preserves its in vivo activity with higher specificity, further enhanced by the G19S mutation. This is the first time that an engineered meganuclease variant targets the human RAG1 locus by stimulating homologous recombination in human cell lines up to 265 bp away from the cleavage site. Our analysis illustrates the key features for à la carte procedure in protein-DNA recognition design, opening new possibilities for SCID patients whose illness can be treated ex vivo.


Assuntos
Reparo do DNA , Enzimas de Restrição do DNA/química , Genes RAG-1 , Linhagem Celular , DNA/química , Clivagem do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Marcação de Genes , Loci Gênicos , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Engenharia de Proteínas , Recombinação Genética
12.
Methods Mol Biol ; 2553: 1-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227536

RESUMO

Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.


Assuntos
Biotecnologia , Engenharia Metabólica , Biotecnologia/métodos , Biologia Computacional , Fermentação , Indústrias , Engenharia Metabólica/métodos
13.
Biochim Biophys Acta Gen Subj ; 1867(6): 130343, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933625

RESUMO

BACKGROUND: Physarum polycephalum is an unusual macroscopic myxomycete expressing a large range of glycosyl hydrolases. Among them, enzymes from the GH18 family can hydrolyze chitin, an important structural component of the cell walls in fungi and in the exoskeleton of insects and crustaceans. METHODS: Low stringency sequence signature search in transcriptomes was used to identify GH18 sequences related to chitinases. Identified sequences were expressed in E. coli and corresponding structures modelled. Synthetic substrates and in some cases colloidal chitin were used to characterize activities. RESULTS: Catalytically functional hits were sorted and their predicted structures compared. All share the TIM barrel structure of the GH18 chitinase catalytic domain, optionally fused to binding motifs, such as CBM50, CBM18, and CBM14, involved in sugar recognition. Assessment of the enzymatic activities following deletion of the C-terminal CBM14 domain of the most active clone evidenced a significant contribution of this extension to the chitinase activity. A classification based on module organization, functional and structural criteria of characterized enzymes was proposed. CONCLUSIONS: Physarum polycephalum sequences encompassing a chitinase like GH18 signature share a modular structure involving a structurally conserved catalytic TIM barrels decorated or not by a chitin insertion domain and optionally surrounded by additional sugar binding domains. One of them plays a clear role in enhancing activities toward natural chitin. GENERAL SIGNIFICANCE: Myxomycete enzymes are currently poorly characterized and constitute a potential source for new catalysts. Among them glycosyl hydrolases have a strong potential for valorization of industrial waste as well as in therapeutic field.


Assuntos
Quitinases , Mixomicetos , Physarum polycephalum , Quitinases/genética , Quitinases/química , Physarum polycephalum/metabolismo , Mixomicetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Quitina/química , Açúcares
14.
Hum Mol Genet ; 19(9): 1690-701, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20123862

RESUMO

DNA polymerase eta (poleta) performs translesion synthesis past ultraviolet (UV) photoproducts and is deficient in cancer-prone xeroderma pigmentosum variant (XP-V) syndrome. The slight sensitivity of XP-V cells to UV is dramatically enhanced by low concentrations of caffeine. So far, the biological explanation for this feature remains elusive. Using DNA combing, we showed that translesion synthesis defect leads to a strong reduction in the number of active replication forks and a high proportion of stalled forks in human cells, which contrasts with budding yeast. Moreover, extensive regions of single-strand DNA are formed during replication in irradiated XP-V cells, leading to an over-activation of ATR/Chk1 pathway after low UVC doses. Addition of a low concentration of caffeine post-irradiation, although inefficient to restore S-phase progression, significantly decreases Chk1 activation and abrogates DNA synthesis in XP-V cells. While inhibition of Chk1 activity by UCN-01 prevents UVC-induced S-phase delay in wild-type cells, it aggravates replication defect in XP-V cells by increasing fork stalling. Consequently, UCN-01 sensitizes XP-V cells to UVC as caffeine does. Our findings indicate that poleta acts at stalled forks to resume their progression, preventing the requirement for efficient replication checkpoint after low UVC doses. In the absence of poleta, Chk1 kinase becomes essential for replication resumption by alternative pathways, via fork stabilization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Replicação do DNA/fisiologia , DNA/biossíntese , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Xeroderma Pigmentoso/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Linhagem Celular , Quinase 1 do Ponto de Checagem , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Citometria de Fluxo , Humanos , RNA Interferente Pequeno/genética , Transfecção , Raios Ultravioleta/efeitos adversos
15.
Nucleic Acids Res ; 37(16): 5405-19, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19584299

RESUMO

Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.


Assuntos
Enzimas de Restrição do DNA/genética , Marcação de Genes , Genes RAG-1 , Animais , Células CHO , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Dimerização , Engenharia Genética , Humanos , Recombinação Genética , Imunodeficiência Combinada Severa/genética
16.
Front Bioeng Biotechnol ; 9: 734902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660556

RESUMO

Efficient and reliable genome engineering technologies have yet to be developed for diatoms. The delivery of DNA in diatoms results in the random integration of multiple copies, quite often leading to heterogeneous gene activity, as well as host instability. Transgenic diatoms are generally selected on the basis of transgene expression or high enzyme activity, without consideration of the copy number or the integration locus. Here, we propose an integrated pipeline for the diatom, Phaeodactylum tricornutum, that accurately quantifies transgene activity using a ß-glucuronidase assay and the number of transgene copies integrated into the genome through Droplet Digital PCR (ddPCR). An exhaustive and systematic analysis performed on 93 strains indicated that 42% of them exhibited high ß-glucuronidase activity. Though most were attributed to high transgene copy numbers, we succeeded in isolating single-copy clones, as well as sequencing the integration loci. In addition to demonstrating the impact of the genomic integration site on gene activity, this study identifies integration sites for stable transgene expression in Phaeodactylum tricornutum.

17.
Methods Mol Biol ; 2307: 25-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847980

RESUMO

TALENs (Transcription Activator-Like EndoNuclease) are molecular scissors designed to recognize and introduce a double-strand break at a specific genome locus. They represent tools of interest in the frame of genome edition. Upon cleavage, two different pathways lead to DNA repair: Non-homologous End Joining (NHEJ) repair, leading to efficient introduction of short insertion/deletion mutations which can disrupt translational reading frame and Homology Recombination (HR)-directed repair that occurs when exogenous DNA is supplied. Here we introduce how to use TALENs in the oleaginous yeast Yarrowia lipolytica by presenting a step-by-step method allowing to knock out or to introduce in vivo a point mutation in a gene of Yarrowia lipolytica. This chapter describes the material required, the transformation procedure, and the screening process.


Assuntos
Edição de Genes/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Yarrowia/genética , Reparo do DNA por Junção de Extremidades , Genoma Fúngico , Mutação Puntual , Software
18.
Curr Biol ; 31(15): 3221-3232.e9, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102110

RESUMO

Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.


Assuntos
Diatomáceas , Alelos , Divisão Celular , Cromossomos , Variações do Número de Cópias de DNA , Diatomáceas/genética
19.
ACS Synth Biol ; 9(9): 2562-2575, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786349

RESUMO

CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.


Assuntos
Edição de Genes/métodos , Acil-CoA Oxidase/genética , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Yarrowia/enzimologia
20.
J Mol Biol ; 430(21): 4293-4306, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30227135

RESUMO

Yarrowia lipolytica is an oleaginous yeast of growing industrial interest for biotechnological applications. In the last few years, genome edition has become an easier and more accessible prospect with the world wild spread development of CRISPR/Cas9 technology. In this study, we focused our attention on the production of the two key elements of the CRISPR-Cas9 ribonucleic acid protein complex in this non-conventional yeast. The efficiency of NHEJ-induced knockout was measured by time-course monitoring using multiple parameters flow cytometry, as well as phenotypic and genotypic observations, and linked to nuclease production levels showing that its strong overexpression is unnecessary. Thus, the limiting factor for the generation of a functional ribonucleic acid protein complex clearly resides in guide expression, which was probed by testing different linker lengths between the transfer RNA promoter and the sgRNA. The results highlight a clear deleterious effect of mismatching bases at the 5' end of the target sequence. For the first time in yeast, an investigation of its maturation from the primary transcript was undertaken by sequencing multiple sgRNAs extracted from the host. These data provide insights into of the yeast small RNA processing, from synthesis to maturation, and suggests a pathway for their degradation in Y. lipolytica. Subsequently, a whole-genome sequencing of a modified strain detected no abnormal modification due to off-target effects, confirming CRISPR/Cas9 as a safe strategy for editing Y. lipolytica genome. Finally, the optimized system was used to promote in vivo directed mutagenesis via homology-directed repair with a ssDNA oligonucleotide.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Yarrowia/genética , Genoma Fúngico , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA