RESUMO
Nerve agents and organophosphorus pesticides make a covalent bond with the active site serine of acetylcholinesterase (AChE), resulting in inhibition of AChE activity and toxic symptoms. AChE in red blood cells (RBCs) serves as a surrogate for AChE in the nervous system. Mass spectrometry analysis of adducts on RBC AChE could provide evidence of exposure. Our goal was to develop a method of immunopurifying human RBC AChE in quantities adequate for detecting exposure by mass spectrometry. For this purpose, we immobilized 3 commercially available anti-human acetylcholinesterase monoclonal antibodies (AE-1, AE-2, and HR2) plus 3 new monoclonal antibodies. The monoclonal antibodies were characterized for binding affinity, epitope mapping by pairing analysis, and nucleotide and amino acid sequences. AChE was solubilized from frozen RBCs with 1% (v/v) Triton X-100. A 16 mL sample containing 5.8 µg of RBC AChE was treated with a quantity of soman model compound that inhibited 50% of the AChE activity. Native and soman-inhibited RBC AChE samples were immunopurified on antibody-Sepharose beads. The immunopurified RBC AChE was digested with pepsin and analyzed by liquid chromatography tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. The aged soman-modified PheGlyGluSerAlaGlyAlaAlaSer (FGESAGAAS) peptide was detected using a targeted analysis method. It was concluded that all 6 monoclonal antibodies could be used to immunopurify RBC AChE and that exposure to nerve agents could be detected as adducts on the active site serine of RBC AChE.
Assuntos
Acetilcolinesterase/isolamento & purificação , Eritrócitos/enzimologia , Imunoprecipitação , Agentes Neurotóxicos/análise , Acetilcolinesterase/imunologia , Acetilcolinesterase/metabolismo , Humanos , Espectrometria de MassasRESUMO
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are irreversibly inhibited by organophosphorus pesticides through formation of a covalent bond with the active site serine. Proteins that have no active site serine, for example albumin, are covalently modified on tyrosine and lysine. Chronic illness from pesticide exposure is not explained by inhibition of AChE and BChE. Our goal was to produce a monoclonal antibody that recognizes proteins diethoxyphosphorylated on tyrosine. Diethoxyphosphate-tyrosine adducts for 13 peptides were synthesized. The diethoxyphosphorylated (OP) peptides cross-linked to four different carrier proteins were used to immunize, boost, and screen mice. Monoclonal antibodies were produced with hybridoma technology. Monoclonal antibody depY was purified and characterized by ELISA, western blotting, Biacore, and Octet technology to determine binding affinity and binding specificity. DepY recognized diethoxyphosphotyrosine independent of the amino acid sequence around the modified tyrosine and independent of the identity of the carrier protein or peptide. It had an IC50 of 3 × 10-9 M in a competition assay with OP tubulin. Kd values measured by Biacore and OctetRED96 were 10-8 M for OP-peptides and 1 × 10-12 M for OP-proteins. The limit of detection measured on western blots hybridized with 0.14 µg/mL of depY was 0.025 µg of human albumin conjugated to YGGFL-OP. DepY was specific for diethoxyphosphotyrosine (chlorpyrifos oxon adduct) as it failed to recognize diethoxyphospholysine, phosphoserine, phosphotyrosine, phosphothreonine, dimethoxyphosphotyrosine (dichlorvos adduct), dimethoxyphosphoserine, monomethoxyphosphotyrosine (aged dichlorvos adduct), and cresylphosphoserine. In conclusion, a monoclonal antibody that specifically recognizes diethoxyphosphotyrosine adducts has been developed. The depY monoclonal antibody could be useful for identifying new biomarkers of OP exposure.
Assuntos
Aminoácidos/química , Anticorpos Monoclonais/imunologia , Peptídeos/química , Peptídeos/imunologia , Fosfotirosina/análogos & derivados , Fosfotirosina/imunologia , Aminoácidos/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Humanos , Camundongos , Estrutura Molecular , Fosfotirosina/químicaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form, accounting for more than 90% of all pancreatic malignancies. In a previous study, we found that hypoxia and chemotherapy induced expression of Heme Oxygenase-1 (HO-1) in PDAC cells and tissues. Arsenic trioxide (ATO) is the first-line chemotherapeutic drug for acute promyelocytic leukemia (APL). ATO increases the generation of reactive oxidative species (ROS) and induces apoptosis in treated cells. The clinical use of ATO for solid tumors is limited due to severe systemic toxicity. In order to reduce cytotoxic side effects and resistance and improve efficacy, it has become increasingly common to use combination therapies to treat cancers. In this study, we used ATO-sensitive and less sensitive PDAC cell lines to test the effect of combining HO-1 inhibitors (SnPP and ZnPP) with ATO on HO-1 expression, cell survival, and other parameters. Our results show that ATO significantly induced the expression of HO-1 in different PDAC cells through the p38 MAPK signaling pathway. ROS production was confirmed using the oxygen-sensitive probes DCFH and DHE, N-acetyl cysteine (NAC), an ROS scavenger, and oxidized glutathione levels (GSSG). Both ATO and HO-1 inhibitors reduced PDAC cell survival. In combined treatment, inhibiting HO-1 significantly increased ATO cytotoxicity, disrupted the GSH cycle, and induced apoptosis as measured using flow cytometry. ATO and HO-1 inhibition modulated autophagy as shown by increased expression of autophagy markers ATG5, p62, and LC3B in PDAC cells. This increase was attenuated by NAC treatment, indicating that autophagy modulation was through an ROS-dependent mechanism. In conclusion, our work explored new strategies that could lead to the development of less toxic and more effective therapies against PDAC by combining increased cellular stress and targeting autophagy.
RESUMO
Bone metastatic disease of prostate cancer (PCa) is incurable and progression in bone is largely dictated by tumor-stromal interactions in the bone microenvironment. We showed previously that bone neutrophils initially inhibit bone metastatic PCa growth yet metastatic PCa becomes resistant to neutrophil response. Further, neutrophils isolated from tumor-bone lost their ability to suppress tumor growth through unknown mechanisms. With this study, our goal was to define the impact of metastatic PCa on neutrophil function throughout tumor progression and to determine the potential of neutrophils as predictive biomarkers of metastatic disease. Using patient peripheral blood polymorphonuclear neutrophils (PMNs), we identified that PCa progression dictates PMN cell surface markers and gene expression, but not cytotoxicity against PCa. Importantly, we also identified a novel phenomenon in which second generation androgen deprivation therapy (ADT) suppresses PMN cytotoxicity via increased transforming growth factor beta receptor I (TßRI). High dose testosterone and genetic or pharmacologic TßRI inhibition rescued androgen receptor-mediated neutrophil suppression and restored neutrophil anti-tumor immune response. These studies highlight the ability to leverage standard-care ADT to generate neutrophil anti-tumor responses against bone metastatic PCa.
Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Androgênios , Neutrófilos/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
RESUMO
Female mice transgenic for the rat proto-oncogene c-erb-B2, under control of the mouse mammary tumor virus (MMTV) promoter (neuN), spontaneously develop metastatic mammary carcinomas. The development of these mammary tumors is associated with increased number of GR-1(+)CD11b(+) myeloid derived suppressor cells (MDSCs) in the peripheral blood (PB), spleen and tumor. We report a complex relationship between tumor growth, MDSCs and immune regulatory molecules in non-mutated neu transgenic mice on a FVB background (FVB-neuN). The first and second tumors in FVB-neuN mice develop at a median of 265 (147-579) and 329 (161-523) days, respectively, resulting in a median survival time (MST) of 432 (201 to >500) days. During tumor growth, significantly increased number of MDSCs is observed in the PB and spleen, as well as, in infiltrating the mammary tumors. Our results demonstrate a direct correlation between tumor size and the number of MDSCs infiltrating the tumor and an inverse relationship between the frequency of CD4(+) T-cells and MDSCs in the spleen. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assessment of enzyme and cytokine transcript levels in the spleen, tumor, tumor-infiltrating non-parenchymal cells (NPCs) and mammary glands revealed a significant increase in transcript levels from grossly normal mammary glands and tumor-infiltrating NPCs during tumor progression. Tumor NPCs, as compared to spleen cells from wild-type (w/t) mice, expressed significantly higher levels of arginase-1 (ARG-1), nitric oxide synthase (NOS-2), vascular endothelial growth factor (VEGF-A) and significantly lower levels of interferon (IFN)-gamma, interleukin (IL)-2 and fms-like tyrosine kinase-3 ligand (Flt3L) transcript levels. Transcript levels in the spleens of tumor-bearing (TB) mice also differed from normal mice, although to a lesser extent than transcript levels from tumor-infiltrating NPCs. Furthermore, both spleen cells and NPCs from TB mice, but not control mice, suppressed alloantigen responses by syngeneic control spleen cells. Correlative studies revealed that the number of MDSCs in the spleen was directly associated with granulocyte colony stimulating factor (G-CSF) transcript levels in the spleen; while the number of MDSCs in the tumors was directly correlated with splenic granulocyte macrophage stimulating factor (GM-CSF) transcript levels, tumor volume and tumor cell number. Together our results support a role for MDSCs in tumor initiation and progressive, T-cell depression and loss of function provide evidence which support multiple mechanisms of MDSC expansion in a site-dependent manner.
Assuntos
Neoplasias Mamárias Experimentais/imunologia , Células Mieloides/fisiologia , Animais , Células Cultivadas , Feminino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células Mieloides/imunologia , Esplenomegalia/imunologia , Esplenomegalia/patologiaRESUMO
Drugs to protect against nerve agent toxicity are tested in animals. The current preferred small animal model is guinea pigs because their plasma bioscavenging capacity resembles that of NHP. We stained nondenaturing polyacrylamide slab gels with a variety of substrates, inhibitors, and antibodies to identify the esterases in heparinized guinea pig plasma. An intense band of carboxylesterase activity migrated behind albumin. Minor carboxylesterase bands were revealed after background activity from paraoxonase was inhibited by using EDTA. The major butyrylcholinesterase band was a disulfide-linked dimer. Incubation with the antihuman butyrylcholinesterase antibody B2 18-5 shifted the butyrylcholinesterase dimer band to slower migrating complexes. Carboxylesterases were distinguished from butyrylcholinesterase by their sensitivity to inhibition by bis-p-nitrophenyl phosphate. Acetylcholinesterase tetramers formed a complex with the antihuman acetylcholinesterase antibody HR2. Organophosphorus toxicants including cresyl saligenin phosphate, dichlorvos, and chlorpyrifos oxon irreversibly inhibited the serine esterases but not paraoxonase. Albumin pseudoesterase activity was seen in gels stained with α- or ß-naphthyl acetate and fast blue RR. We conclude that guinea pig plasma has 2 types of carboxylesterase, butyrylcholinesterase dimers and 5 minor butyrylcholinesterase forms, a small amount of acetylcholinesterase tetramers, paraoxonase, and albumin pseudoesterase activity. A knockout mouse with no carboxylesterase activity in plasma is available and may prove to be a better model for studies of nerve agent toxicology than guinea pigs.
Assuntos
Análise Química do Sangue/veterinária , Eletroforese em Gel de Poliacrilamida/veterinária , Cobaias , Plasma/química , Acetilcolinesterase/análise , Acetilcolinesterase/isolamento & purificação , Albuminas/análise , Albuminas/isolamento & purificação , Animais , Arildialquilfosfatase/análise , Arildialquilfosfatase/isolamento & purificação , Análise Química do Sangue/métodos , Butirilcolinesterase/análise , Butirilcolinesterase/isolamento & purificação , Carboxilesterase/análise , Carboxilesterase/isolamento & purificação , Eletroforese em Gel de Poliacrilamida/métodos , Ratos Sprague-DawleyRESUMO
Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions.
Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta , Ingestão de Energia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologiaRESUMO
Traditional cytogenetic studies of ovarian stromal tumors are few, although trisomy 12 has been frequently documented with fluorescence in situ hybridization (FISH). In the current study, karyotypic analysis of four ovarian stromal tumors and a review of the literature suggest that numerical abnormalities of chromosomes 4 and 9 might also be important, possibly as secondary changes. To determine the frequency of 4, 9, and 12 aneuploidy in a larger group of ovarian tumors, FISH studies were performed on eight fibromas, three thecomas, one fibrothecoma, and five cellular fibromas. Trisomy 12 was identified in all five cellular fibromas as well as in two fibromas and the fibrothecoma. Gain of chromosome 9 was confined to the cellular fibromas. Loss of chromosomes 4 and/or 9 was prominent in the fibromas. These findings confirm the presence of trisomy 12 as a nonrandom chromosomal abnormality in ovarian stromal tumors. Moreover, these conventional and molecular cytogenetic data indicate that gain of chromosome 9 in addition to gain of chromosome 12 is prominent in cellular fibroma. In contrast, loss of chromosomes 4 and/or 9 are recurrent in fibroma. In summary, imbalances of chromosomes 4 and 9 appear to represent important secondary abnormalities in the thecoma-fibroma ovarian tumor group.
Assuntos
Desequilíbrio Alélico , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 4 , Cromossomos Humanos Par 9 , Fibroma/genética , Neoplasias Ovarianas/genética , Tumor da Célula Tecal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Feminino , Fibroma/patologia , Humanos , Cariotipagem , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Recidiva , Tumor da Célula Tecal/patologiaRESUMO
Human butyrylcholinesterase (HuBChE) protects from nerve agent toxicity. Our goal was to determine whether bovine serum could be used as a source of BChE. Bovine BChE (BoBChE) was immunopurified from 100 mL fetal bovine serum (FBS) or 380 mL adult bovine serum by binding to immobilized monoclonal mAb2. Bound proteins were digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The results proved that FBS and adult bovine serum contain BoBChE. The concentration of BoBChE was estimated to be 0.04 µg/mL in FBS, and 0.03 µg/mL in adult bovine serum, values lower than the 4 µg/mL BChE in human serum. Nondenaturing gel electrophoresis showed that monoclonal mAb2 bound BoBChE but not bovine acetylcholinesterase (BoAChE) and confirmed that FBS contains BoBChE and BoAChE. Recombinant bovine BChE (rBoBChE) expressed in serum-free culture medium spontaneously reactivated from inhibition by chlorpyrifos oxon at a rate of 0.0023 min-1 (t1/2 = 301 min-1) and aged at a rate of 0.0138 min-1 (t1/2 = 50 min-1). Both BoBChE and HuBChE have 574 amino acids per subunit and 90% sequence identity. However, the apparent size of serum BoBChE and rBoBChE tetramers was much greater than the 340,000 Da of HuBChE tetramers. Whereas HuBChE tetramers include short polyproline rich peptides derived from lamellipodin, no polyproline peptides have been identified in BoBChE. We hypothesize that BoBChE tetramers use a large polyproline-rich protein to organize subunits into a tetramer and that the low concentration of BoBChE in serum is explained by limited quantities of an unidentified polyproline-rich protein.
Assuntos
Butirilcolinesterase/sangue , Sequência de Aminoácidos , Animais , Butirilcolinesterase/química , Bovinos , Cromatografia Líquida , Humanos , Cinética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em TandemRESUMO
Human plasma to be analyzed for exposure to cholinesterase inhibitors is stored at 4 °C or lower to prevent denaturation of human butyrylcholinesterase (HuBChE), the biomarker of exposure. Currently published protocols immunopurify HuBChE using antibodies that bind native HuBChE before analysis by mass spectrometry. It is anticipated that the plasma collected from human casualties may be stored nonideally at elevated temperatures of up to 45 °C for days or maybe weeks. At 45 °C, the plasma loses 50% of its HuBChE activity in 8 days and 95% in 40 days. Our goal was to identify a set of monoclonal antibodies that could be used to immunopurify HuBChE from plasma stored at 45 °C. The folding states of pure human HuBChE stored at 4 and 45 °C and boiled at 100 °C were visualized on nondenaturing gels stained with Coomassie blue. Fully active pure HuBChE tetramers had a single band, but pure HuBChE stored at 45 °C had four bands, representing native, partly unfolded, aggregated, and completely denatured, boiled tetramers. The previously described monoclonal B2 18-5 captured native, partly unfolded, and aggregated HuBChE tetramers, whereas a new monoclonal, C191 developed in our laboratory, was found to selectively capture completely denatured, boiled HuBChE. The highest quantity of HuBChE protein was extracted from 45 °C heat-denatured human plasma when HuBChE was immunopurified with a combination of monoclonals B2 18-5 and C191. Using a mixture of these two antibodies in future emergency response assays may increase the capability to confirm exposure to cholinesterase inhibitors.
RESUMO
A stress response can induce myeloid progenitor cell (MPC) proliferation, mobilization, and extramedullary hematopoiesis (EMH) within lymphoid and parenchymal organs. Our studies using in vivo BrdU labeling, Ki-67 IHC staining, and carboxyfluorescein succinimidyl ester (CFSE) adoptive cell transfer revealed that spleens, rather than bone marrow (BM) and peripheral blood (PB), from 4T1 mammary tumor-bearing (TB) mice were the primary site of MPC proliferation. The resultant increase in MPCs was associated with tumor hematopoietic growth factor (GF) transcription, decreased apoptosis, as well as, prolonged survival of splenic MPCs. In naïve mice, i.v. injected CFSE-labeled MDSCs (myeloid-derived suppressor cells) initially accumulated in the lungs, while in TB mice, they rapidly sequestered in the spleen. In contrast, a few of the injected MDSCs and leukocytes arrested, proliferated, or accumulated in the marrow, tumor, or PB of TB mice. However, BrdU labeling revealed a significant demargination of proliferating splenic MPCs into the PB. In tumors, despite high GF transcript levels, we found that a high frequency of MDSCs was apoptotic. In summary, tumor growth and cytokines regulate MPC proliferation, trafficking, accumulation, apoptosis, and survival.