Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PLoS Genet ; 18(8): e1010357, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998183

RESUMO

The decision to engage in courtship depends on external cues from potential mates and internal cues related to maturation, health, and experience. Hormones allow for coordinated conveyance of such information to peripheral tissues. Here, we show Ecdysis-Triggering Hormone (ETH) is critical for courtship inhibition after completion of copulation in Drosophila melanogaster. ETH deficiency relieves post-copulation courtship inhibition (PCCI) and increases male-male courtship. ETH appears to modulate perception and attractiveness of potential mates by direct action on primary chemosensory neurons. Knockdown of ETH receptor (ETHR) expression in GR32A-expressing neurons leads to reduced ligand sensitivity and elevated male-male courtship. We find OR67D also is critical for normal levels of PCCI after mating. ETHR knockdown in OR67D-expressing neurons or GR32A-expressing neurons relieves PCCI. Finally, ETHR silencing in the corpus allatum (CA), the sole source of juvenile hormone, also relieves PCCI; treatment with the juvenile hormone analog methoprene partially restores normal post-mating behavior. We find that ETH, a stress-sensitive reproductive hormone, appears to coordinate multiple sensory modalities to guide Drosophila male courtship behaviors, especially after mating.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Corte , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormônios Juvenis/metabolismo , Masculino , Neurônios/metabolismo , Comportamento Sexual Animal/fisiologia
2.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201555

RESUMO

High concentrations of dietary salt are harmful to health. Like most animals, Drosophila melanogaster are attracted to foods that have low concentrations of salt, but show strong taste avoidance of high salt foods. Salt in known on multiple classes of taste neurons, activating Gr64f sweet-sensing neurons that drive food acceptance and 2 others (Gr66a bitter and Ppk23 high salt) that drive food rejection. Here we find that NaCl elicits a bimodal dose-dependent response in Gr64f taste neurons, which show high activity with low salt and depressed activity with high salt. High salt also inhibits the sugar response of Gr64f neurons, and this action is independent of the neuron's taste response to salt. Consistent with the electrophysiological analysis, feeding suppression in the presence of salt correlates with inhibition of Gr64f neuron activity, and remains if high salt taste neurons are genetically silenced. Other salts such as Na2SO4, KCl, MgSO4, CaCl2, and FeCl3 act on sugar response and feeding behavior in the same way. A comparison of the effects of various salts suggests that inhibition is dictated by the cationic moiety rather than the anionic component of the salt. Notably, high salt-dependent inhibition is not observed in Gr66a neurons-response to a canonical bitter tastant, denatonium, is not altered by high salt. Overall, this study characterizes a mechanism in appetitive Gr64f neurons that can deter ingestion of potentially harmful salts.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Cloreto de Sódio na Dieta/farmacologia , Sais/farmacologia , Paladar/fisiologia , Comportamento Alimentar , Açúcares/farmacologia , Cloreto de Sódio/farmacologia , Proteínas de Drosophila/genética
3.
J Neurosci ; 41(50): 10222-10246, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753739

RESUMO

Food choice, in animals, has been known to change with internal nutritional state and also with variable dietary conditions. To better characterize mechanisms of diet-induced plasticity of food preference in Drosophila melanogaster, we synthesized diets with macronutrient imbalances and examined how food choice and taste sensitivity were modified in flies that fed on these diets. We found that dietary macronutrient imbalances caused compensatory behavioral shifts in both sexes to increase preference for the macronutrient that was scant in the food source, and simultaneously reduce preference for the macronutrient that was enriched. Further analysis with females revealed analogous changes in sweet taste responses in labellar neurons, with increased sensitivity on sugar-reduced diet and decreased sensitivity on sugar-enriched diet. Interestingly, we found differences in the onset of changes in taste sensitivity and behavior, which occur over 1-4 d, in response to dietary sugar reduction or enrichment. To investigate molecular mechanisms responsible for diet-induced taste modulation, we used candidate gene and transcriptome analyses. Our results indicate that signaling via Dop2R is involved in increasing cellular and behavioral sensitivity to sugar as well as in decreasing behavioral sensitivity to amino acids on dietary sugar reduction. On the other hand, cellular and behavioral sensitivity to sugar relies on dilp5 and a decrease in sugar preference following dietary sugar abundance was correlated with downregulation of dilp5 Together, our results suggest that feeding preference for sugar and amino acid can be modulated independently to facilitate food choice that accounts for prior dietary experience.SIGNIFICANCE STATEMENT Animals adjust their feeding preferences based on prior dietary experiences. Here, we find that upon dietary macronutrient deprivation, flies undergo compensatory changes in food preference. The altered preference correlates with changes in peripheral taste sensitivity. While Dop2R mediates changes following dietary sugar reduction, downregulation of dilp5 is associated with changes caused by a sugar-enriched diet. This study contributes to a better understanding of neurophysiological plasticity of the taste system in flies, and its role in facilitating adjustment of foraging behavior based on nutritional requirements.


Assuntos
Drosophila melanogaster/fisiologia , Preferências Alimentares/fisiologia , Nutrientes , Transdução de Sinais/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Insulinas/metabolismo , Masculino , Receptores de Dopamina D1/metabolismo
4.
J Neurosci ; 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031164

RESUMO

Insect gustatory systems comprise multiple taste organs for detecting chemicals that signal palatable or noxious quality. Although much is known about how taste neurons sense various chemicals, many questions remain about how individual taste neurons in each taste organ control feeding. Here, we use the Drosophila pharynx as a model to investigate how taste information is encoded at the cellular level to regulate consumption of sugars and amino acids. We first generate taste-blind animals and establish a critical role for pharyngeal input in food selection. We then investigate feeding behavior of both male and female flies in which only selected classes of pharyngeal neurons are restored via binary choice feeding preference assays as well as Fly Liquid-Food Interaction Counter (FLIC) assays. We find instances of integration as well as redundancy in how pharyngeal neurons control behavioral responses to sugars and amino acids. Additionally, we find that pharyngeal neurons drive sugar feeding preference based on sweet taste but not on nutritional value. Finally, we demonstrate functional specialization of pharyngeal and external neurons using optogenetic activation. Overall, our genetic taste neuron protection system in a taste-blind background provides a powerful approach to elucidate principles of pharyngeal taste coding and demonstrates functional overlap and subdivision among taste neurons.SIGNIFICANCE STATEMENTDietary intake of nutritious chemicals such as sugars and amino acids is essential for an animal's survival. In insects, distinct classes of taste neurons control acceptance or rejection of food sources. Here we develop a genetic system to investigate how individual taste neurons in the Drosophila pharynx encode specific tastants, focusing on sugars and amino acids. By examining flies in which only a single class of taste neurons is active, we find evidence for functional overlap as well as redundancy in responses to sugars and amino acids. We also uncover functional subdivision between pharyngeal and external neurons in driving feeding responses. Overall, we find that different pharyngeal neurons act together to control intake of the two categories of appetitive tastants.

5.
Cell Mol Life Sci ; 77(6): 1087-1101, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31598735

RESUMO

The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Receptores de Superfície Celular/metabolismo , Células Receptoras Sensoriais/metabolismo , Paladar , Animais , Drosophila/anatomia & histologia , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Expressão Gênica , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Células Receptoras Sensoriais/citologia
6.
J Exp Biol ; 222(Pt 19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511344

RESUMO

Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila melanogaster/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Optogenética , Faringe/inervação , Caracteres Sexuais , Sinapses/fisiologia , Paladar/fisiologia , Termogênese/fisiologia
7.
Nature ; 502(7472): 507-12, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24089210

RESUMO

There are major impediments to finding improved DEET alternatives because the receptors causing olfactory repellency are unknown, and new chemicals require exorbitant costs to determine safety for human use. Here we identify DEET-sensitive neurons in a pit-like structure in the Drosophila melanogaster antenna called the sacculus. They express a highly conserved receptor, Ir40a, and flies in which these neurons are silenced or Ir40a is knocked down lose avoidance to DEET. We used a computational structure-activity screen of >400,000 compounds that identified >100 natural compounds as candidate repellents. We tested several and found that most activate Ir40a(+) neurons and are repellents for Drosophila. These compounds are also strong repellents for mosquitoes. The candidates contain chemicals that do not dissolve plastic, are affordable and smell mildly like grapes, with three considered safe in human foods. Our findings pave the way to discover new generations of repellents that will help fight deadly insect-borne diseases worldwide.


Assuntos
DEET/metabolismo , Repelentes de Insetos/metabolismo , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/citologia , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Simulação por Computador , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , DEET/farmacologia , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Humanos , Repelentes de Insetos/efeitos adversos , Repelentes de Insetos/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 111(4): 1598-603, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474785

RESUMO

Sweet taste cells play critical roles in food selection and feeding behaviors. Drosophila sweet neurons express eight gustatory receptors (Grs) belonging to a highly conserved clade in insects. Despite ongoing efforts, little is known about the fundamental principles that underlie how sweet tastants are detected by these receptors. Here, we provide a systematic functional analysis of Drosophila sweet receptors using the ab1C CO2-sensing olfactory neuron as a unique in vivo decoder. We find that each of the eight receptors of this group confers sensitivity to one or more sweet tastants, indicating direct roles in ligand recognition for all sweet receptors. Receptor response profiles are validated by analysis of taste responses in corresponding Gr mutants. The response matrix shows extensive overlap in Gr-ligand interactions and loosely separates sweet receptors into two groups matching their relationships by sequence. We then show that expression of a bitter taste receptor confers sensitivity to selected aversive tastants that match the responses of the neuron that the Gr is derived from. Finally, we characterize an internal fructose-sensing receptor, Gr43a, and its ortholog in the malaria mosquito, AgGr25, in the ab1C expression system. We find that both receptors show robust responses to fructose along with a number of other sweet tastants. Our results provide a molecular basis for tastant detection by the entire repertoire of sweet taste receptors in the fly and lay the foundation for studying Grs in mosquitoes and other insects that transmit deadly diseases.


Assuntos
Drosophila/fisiologia , Receptores de Superfície Celular/fisiologia , Papilas Gustativas/fisiologia , Paladar , Animais , Mutação , Receptores de Superfície Celular/genética
9.
PLoS Genet ; 10(3): e1004209, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651716

RESUMO

The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.


Assuntos
Proteínas de Drosophila/genética , Neurônios Receptores Olfatórios/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Receptores Odorantes/genética , Olfato/genética , Animais , Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Neurônios Receptores Olfatórios/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais
10.
J Neurosci ; 34(21): 7148-64, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849350

RESUMO

To understand the principles of taste coding, it is necessary to understand the functional organization of the taste organs. Although the labellum of the Drosophila melanogaster head has been described in detail, the tarsal segments of the legs, which collectively contain more taste sensilla than the labellum, have received much less attention. We performed a systematic anatomical, physiological, and molecular analysis of the tarsal sensilla of Drosophila. We construct an anatomical map of all five tarsal segments of each female leg. The taste sensilla of the female foreleg are systematically tested with a panel of 40 diverse compounds, yielding a response matrix of ∼500 sensillum-tastant combinations. Six types of sensilla are characterized. One type was tuned remarkably broadly: it responded to 19 of 27 bitter compounds tested, as well as sugars; another type responded to neither. The midleg is similar but distinct from the foreleg. The response specificities of the tarsal sensilla differ from those of the labellum, as do n-dimensional taste spaces constructed for each organ, enhancing the capacity of the fly to encode and respond to gustatory information. We examined the expression patterns of all 68 gustatory receptors (Grs). A total of 28 Gr-GAL4 drivers are expressed in the legs. We constructed a receptor-to-sensillum map of the legs and a receptor-to-neuron map. Fourteen Gr-GAL4 drivers are expressed uniquely in the bitter-sensing neuron of the sensillum that is tuned exceptionally broadly. Integration of the molecular and physiological maps provides insight into the underlying basis of taste coding.


Assuntos
Proteínas de Drosophila/genética , Membro Posterior/fisiologia , Receptores de Superfície Celular/genética , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/metabolismo , Paladar/fisiologia , Potenciais de Ação/efeitos dos fármacos , Alcaloides/farmacologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Membro Posterior/anatomia & histologia , Membro Posterior/inervação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Receptores de Superfície Celular/metabolismo , Órgãos dos Sentidos/ultraestrutura , Sensilas/fisiologia , Sensilas/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Estimulação Química , Paladar/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352472

RESUMO

Deficits in chemosensory processing are associated with healthy aging, as well as numerous neurodegenerative disorders, including Alzheimer's Disease (AD). In many cases, chemosensory deficits are harbingers of neurodegenerative disease, and understanding the mechanistic basis for these changes may provide insight into the fundamental dysfunction associated with aging and neurodegeneration. The fruit fly, Drosophila melanogaster , is a powerful model for studying chemosensation, aging, and aging-related pathologies, yet the effects of aging and neurodegeneration on chemosensation remain largely unexplored in this model, particularly with respect to taste. To determine whether the effects of aging on taste are conserved in flies, we compared the response of flies to different appetitive tastants. Aging impaired response to sugars, but not medium-chain fatty acids that are sensed by a shared population of neurons, revealing modality-specific deficits in taste. Selective expression of the human amyloid beta (Aß) 1-42 peptide bearing the Arctic mutation (E693E) associated with early onset AD in the neurons that sense sugars and fatty acids phenocopies the effects of aging, suggesting that the age-related decline in response is localized to gustatory neurons. Functional imaging of gustatory axon terminals revealed reduced response to sugar, but not fatty acids. Axonal innervation of the fly taste center was largely intact in aged flies, suggesting that reduced sucrose response does not derive from neurodegeneration. Conversely, expression of the amyloid peptide in sweet-sensing taste neurons resulted in reduced innervation of the primary fly taste center. A comparison of transcript expression within the sugar-sensing taste neurons revealed age-related changes in 66 genes, including a reduction in odorant-binding protein class genes that are also expressed in taste sensilla. Together, these findings suggest that deficits in taste detection may result from signaling pathway-specific changes, while different mechanisms underly taste deficits in aged and AD model flies. Overall, this work provides a model to examine cellular deficits in neural function associated with aging and AD.

12.
Cold Spring Harb Protoc ; 2023(4): pdb.top107803, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36446528

RESUMO

The chemical senses-smell and taste-detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila melanogaster provides an attractive model to study chemosensory coding because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, nearly all peripheral chemosensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs housed in specialized hairs called sensilla. Here, we briefly review anatomical, molecular, and physiological properties of adult Drosophila olfactory and gustatory systems and provide background to methods for electrophysiological recordings of ligand-evoked activity from different types of chemosensory sensilla.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Sensilas/fisiologia , Drosophila melanogaster , Ligantes , Olfato , Paladar/fisiologia
13.
Cold Spring Harb Protoc ; 2023(4): pdb.prot108063, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36446530

RESUMO

Olfactory systems detect and discriminate an enormous diversity of volatile environmental stimuli and provide important paradigms to investigate how sensory cues are represented in the brain. Key stimulus-coding events occur in peripheral olfactory sensory neurons, which typically express a single olfactory receptor-from a large repertoire encoded in the genome-with a defined ligand-response profile. These receptors convert odor ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila provides an attractive model to study olfactory coding because it possesses a relatively simple peripheral olfactory system that displays many organizational parallels to those of vertebrates. Moreover, nearly all olfactory sensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs (antennae and maxillary palps) housed in specialized hairs called sensilla. This protocol describes how to perform recordings of odor-evoked activity from Drosophila olfactory sensilla, covering the basics of sample preparation, setting up the electrophysiology rig, assembling an odor stimulus-delivery device, and data analysis. The methodology can be used to characterize the ligand-recognition properties of most olfactory sensory neurons and the role of olfactory receptors (and other molecular components) in signal transduction.


Assuntos
Neurônios Receptores Olfatórios , Sensilas , Animais , Sensilas/fisiologia , Ligantes , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Odorantes , Drosophila
14.
Cold Spring Harb Protoc ; 2023(4): pdb.prot108064, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36446534

RESUMO

Gustatory systems sense chemicals upon contact and provide a model to investigate how these stimuli are encoded to inform various behavioral decisions including choice of foods, egg-laying sites, and mating partners. Multiple organs in the body house peripheral gustatory sensory neurons, the axons of which project to discrete regions in the subesophageal zone and ventral ganglion, representing both the location and quality of the taste stimulus. Taste neurons are broadly divided into subpopulations associated with either positive or negative behavioral valence, each expressing combinations of taste receptors-in some cases, more than 30 receptors-encoded by one or more chemosensory gene families that together determine their chemical response properties. Drosophila provides a powerful model to study gustatory coding because a majority of the taste sensory units (sensilla) are present in external taste organs (labellum and legs) and are accessible for electrophysiological analysis of tastant-evoked responses. Moreover, a large body of work on the basic characteristics of individual taste neurons housed in a sensillum, as well as on functional surveys of entire taste organs, provides a foundation for investigating further questions about taste coding, adaptability, and evolution. This protocol describes how to perform recordings of stimulus-evoked activity from Drosophila taste sensilla covering the basics of setting up the electrophysiology rig and stimulus-delivery device, sample preparation, and performing and analyzing the recordings.


Assuntos
Sensilas , Paladar , Animais , Paladar/genética , Drosophila , Órgãos dos Sentidos/fisiologia , Neurônios
15.
Artigo em Inglês | MEDLINE | ID: mdl-37612142

RESUMO

In insects, gustatory neurons sense chemicals upon contact and directly inform many behaviors critical for survival and reproduction, including biting, feeding, mating, and egg laying. However, the taste sensory system is underexplored in many anthropophilic disease vectors such as mosquitoes, which acquire and transmit human pathogens during blood feeding from human hosts. This results in a big gap in vector biology-the study of organisms that spread disease by transmitting pathogens-because insect vectors closely interact with humans while selecting suitable individuals and appropriate bite sites for blood meals. Human sweat and skin-associated chemistries are rich in nonvolatile compounds that can be sensed by the mosquito's taste system when she lands on the skin. Taste sensory units, called sensilla, are distributed in many organs across the mosquito body, including the mouthparts, legs, and ovipositors (female-specific structures used to lay eggs). Each sensillum is innervated by as many as five taste neurons, which allow detection and discrimination between various tastants such as water, sugars, salts, amino acids, and plant-derived compounds that taste bitter to humans. Single-sensillum recordings provide a robust way to survey taste responsiveness of individual sensilla to various diagnostic and ecologically relevant chemicals. Such analyses are of immense value for understanding links between mosquito taste responses and behaviors to specific chemical cues and can provide insights into why mosquitoes prefer certain hosts. The results can also aid development of strategies to disrupt close-range mosquito-human interactions to control disease transmission. Here we describe a protocol that is curated for electrophysiological recordings from taste sensilla in mosquitoes and sure to yield exciting results for the field.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37612144

RESUMO

Analysis of taste sensory responses has been a powerful approach for understanding principles of taste detection and coding. The shared architecture of external taste sensing units, called sensilla, in insects opened up the study of tastant-evoked responses in any model of choice using a single-sensillum tip recording method that was developed in the mid-1900s. Early studies in blowflies were instrumental for identifying distinct taste neurons based on their responses to specific categories of chemicals. Broader system-wide analyses of whole organs have since been performed in the genetic model insect Drosophila melanogaster, revealing principles of stereotypical organization and function that appear to be evolutionarily conserved. Although limited in scope, investigations of taste sensory responses in mosquitoes showcase conservation in sensillar organization, as well as in groupings of functionally distinct taste neurons in each sensillum. The field is now poised for more thorough dissections of mosquito taste function, which should be of immense value in understanding close-range chemosensory interactions of mosquitoes with their hosts and environment. Here, we provide an introduction to the basic structure of a taste sensillum and functional analysis of the chemosensory neurons within it.

17.
Cell Rep ; 42(10): 113297, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864792

RESUMO

Comparative studies of related but ecologically distinct species can reveal how the nervous system evolves to drive behaviors that are particularly suited to certain environments. Drosophila melanogaster is a generalist that feeds and oviposits on most overripe fruits. A sibling species, D. sechellia, is an obligate specialist of Morinda citrifolia (noni) fruit, which is rich in fatty acids (FAs). To understand evolution of noni taste preference, we characterized behavioral and cellular responses to noni-associated FAs in three related drosophilids. We find that mixtures of sugar and noni FAs evoke strong aversion in the generalist species but not in D. sechellia. Surveys of taste sensory responses reveal noni FA- and species-specific differences in at least two mechanisms-bitter neuron activation and sweet neuron inhibition-that correlate with shifts in noni preference. Chemoreceptor mutant analysis in D. melanogaster predicts that multiple genetic changes account for evolution of gustatory preference in D. sechellia.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila/genética , Proteínas de Drosophila/genética , Paladar , Ácidos Graxos
18.
iScience ; 26(1): 105777, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594011

RESUMO

Basic volatiles like ammonia are found in insect environments, and at high concentrations cause an atypical action potential burst, followed by inhibition in multiple classes of olfactory receptor neurons (ORNs) in Drosophila melanogaster. During the period of inhibition, ORNs are unable to fire action potentials to their ligands but continue to display receptor potentials. An increase in calcium is also observed in antennal cells of Drosophila and Aedes aegypti. In the gustatory system, ammonia inhibits sugar and salt responses in a dose-dependent manner. Other amines show similar effects in both gustatory and olfactory neurons, correlated with basicity. The concentrations that inhibit neurons reduce proboscis extension to sucrose in Drosophila. In Aedes, a brief exposure to volatile ammonia abolishes attraction to human skin odor for several minutes. These findings reveal an effect that prevents detection of attractive ligands in the olfactory and gustatory systems and has potential in insect control.

19.
J Neurosci ; 31(43): 15300-9, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031876

RESUMO

We examine the molecular and cellular basis of taste perception in the Drosophila larva through a comprehensive analysis of the expression patterns of all 68 Gustatory receptors (Grs). Gr-GAL4 lines representing each Gr are examined, and 39 show expression in taste organs of the larval head, including the terminal organ (TO), the dorsal organ (DO), and the pharyngeal organs. A receptor-to-neuron map is constructed. The map defines 10 neurons of the TO and DO, and it identifies 28 receptors that map to them. Each of these neurons expresses a unique subset of Gr-GAL4 drivers, except for two neurons that express the same complement. All of these neurons express at least two drivers, and one neuron expresses 17. Many of the receptors map to only one of these cells, but some map to as many as six. Conspicuously absent from the roster of Gr-GAL4 drivers expressed in larvae are those of the sugar receptor subfamily. Coexpression analysis suggests that most larval Grs act in bitter response and that there are distinct bitter-sensing neurons. A comprehensive analysis of central projections confirms that sensory information collected from different regions (e.g., the tip of the head vs the pharynx) is processed in different regions of the suboesophageal ganglion, the primary taste center of the CNS. Together, the results provide an extensive view of the molecular and cellular organization of the larval taste system.


Assuntos
Proteínas de Fluorescência Verde/genética , Larva/anatomia & histologia , Órgãos dos Sentidos/citologia , Células Receptoras Sensoriais/metabolismo , Paladar/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Antígenos CD8/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Larva/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Neuron ; 56(3): 503-16, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17988633

RESUMO

We have analyzed the molecular basis of sugar reception in Drosophila. We define the response spectrum, concentration dependence, and temporal dynamics of sugar-sensing neurons. Using in situ hybridization and reporter gene expression, we identify members of the Gr5a-related taste receptor subfamily that are coexpressed in sugar neurons. Neurons expressing reporters of different Gr5a-related genes send overlapping but distinct projections to the brain and thoracic ganglia. Genetic analysis of receptor genes shows that Gr5a is required for response to one subset of sugars and Gr64a for response to a complementary subset. A Gr5a;Gr64a double mutant shows no physiological or behavioral responses to any tested sugar. The simplest interpretation of our results is that Gr5a and Gr64a are each capable of functioning independently of each other within individual sugar neurons and that they are the primary receptors used in the labellum to detect sugars.


Assuntos
Carboidratos/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Comportamento Alimentar/fisiologia , Receptores de Superfície Celular/genética , Paladar/genética , Vias Aferentes/metabolismo , Animais , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Gânglios dos Invertebrados/metabolismo , Expressão Gênica/genética , Mutação , Sistema Nervoso/metabolismo , Neurônios Aferentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA