Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 92: 129389, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379957

RESUMO

In this study, a series of nitric oxide (NO) -releasing 5-cyano-6-phenyl-2, 4-disubstituted pyrimidine derivatives were designed and synthesized. In the in vitro biological evaluation, compound 24l exhibited optimal antiproliferative activity against MGC-803 cells with the IC50 value of 0.95 µM, significantly better than that of the positive control 5-FU. In addition, preliminary mechanistic studies indicated that 24l inhibited colony formation and blocked MGC-803 cells in the G0/G1 phase. DAPI staining, reactive oxygen species and apoptosis assays demonstrated that 24l induced apoptosis of MGC-803 cells. Particularly, the most potent compound 24l produced the highest level of NO, and the antiproliferative activity was significantly reduced after preincubation with NO scavengers. In conclusion, compound 24l may be considered as a potential candidate antitumor agent.


Assuntos
Antineoplásicos , Óxido Nítrico , Óxido Nítrico/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/farmacologia , Apoptose , Pirimidinas/farmacologia , Desenho de Fármacos , Estrutura Molecular
2.
Bioorg Med Chem Lett ; 51: 128268, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302974

RESUMO

In order to find efficient new antitumor drugs, a series of novel trifluoromethyl-substituted pyrimidine derivatives were designed and synthesized, and the bioactivity against four human tumor cells (PC-3, MGC-803, MCF-7 and H1975) was evaluated by MTT assay. Compound 17v displayed potent anti-proliferative activity on H1975 (IC50 = 2.27 µΜ), which was better than the positive control 5-FU (IC50 = 9.37 µΜ). Further biological evaluation studies showed that compound 17v induced apoptosis of H1975 cells and arrested the cell cycle at G2/M phase. Furthermore, compound 17v induced H1975 cells apoptosis through increasing the expression of pro-apoptotic proteins Bax and p53 and down-regulating the anti-apoptotic protein Bcl-2. In addition, compound 17v was able to be tightly embedded in the active pocket of EGFR. In summary, these results demonstrated that compound 17v has a potential as a lead compound for further investigation.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Bioorg Med Chem ; 43: 116265, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192644

RESUMO

In order to find new and highly effective anti-tumor drugs with targeted therapeutic effects, a series of novel 4-aminoquinazoline derivatives containing N-phenylacetamide structure were designed, synthesized and evaluated for antitumor activity against four human cancer cell lines (H1975, PC-3, MDA-MB-231 and MGC-803) using MTT assay. The results showed that the compound 19e had the most potent antiproliferative activity against H1975, PC-3, MDA-MB-231 and MGC-803 cell lines. At the same time, compound 19e could significantly inhibit the colony formation and migration of H1975 cells. Compound 19e also arrested the H1975 cell cycle in the G1 phase and mediated cell apoptosis, promoted the accumulation of ROS in H1975 cells. Furthermore, compound 19e exerted antitumor effect in vitro by reducing the expression of anti-apoptotic protein Bcl-2 and increasing the pro-apoptotic protein Bax and p53. Mechanistically, compound 19e could significantly decreased the phosphorylation of EGFR and its downstream protein PI3K in H1975 cells. Which indicated that compound 19e targeted H1975 cell via interfering with EGFR-PI3K signaling pathway. Molecular docking showed that compound 19e could bind into the active pocket of EGFR. Those work suggested that compound 19e would have remarkable implications for further design of anti-tumor agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
4.
Biomed Pharmacother ; 165: 115207, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499455

RESUMO

Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.


Assuntos
Exossomos , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Exossomos/genética , Exossomos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral/genética
5.
Eur J Med Chem ; 249: 115124, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680986

RESUMO

Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.


Assuntos
Vírus do Sarcoma Murino de Kirsten , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Diferenciação Celular , Proliferação de Células , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA