Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144763

RESUMO

The present study is aimed at determining whether leaf volatile organic compounds (VOCs) are good markers of the grapevine response to defence elicitors in the field. It was carried out in two distinct French vineyards (Burgundy and Bordeaux) over 3 years. The commercial elicitor Bastid® (Syngenta, Saint-Sauveur, France) (COS-OGA) was first used to optimise the VOCs' capture in the field; by bagging stems together with a stir bar sorptive extraction (SBSE) sensor. Three elicitors (Bastid®, copper sulphate and methyl jasmonate) were assessed at three phenological stages of the grapevines by monitoring stilbene phytoalexins and VOCs. Stilbene production was low and variable between treatments and phenological stages. VOCs-particularly terpenes-were induced by all elicitors. However, the response profiles depended on the type of elicitor, the phenological stage and the vineyard, and no sole common VOC was found. The levels of VOC emissions discriminated between weak (Bastid® and copper sulphate) and strong (methyl jasmonate) inducers. Ocimene isomers were constitutively present in the overall blends of the vineyards and increased by the elicitors' treatments, whilst other VOCs were newly released throughout the growing seasons. Nonetheless, the plant development and climate factors undoubtedly influenced the release and profiles of the leaf VOCs.


Assuntos
Estilbenos , Compostos Orgânicos Voláteis , Acetatos , Sulfato de Cobre , Ciclopentanos , Fazendas , Oxilipinas , Folhas de Planta , Terpenos
2.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299533

RESUMO

Grapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid® was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene α-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli®, Romeo®, Bion®, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards.


Assuntos
Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Vitis/microbiologia , Compostos Orgânicos Voláteis/análise , Fungicidas Industriais/análise , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Sesquiterpenos/análise , Vitis/química
3.
Physiol Plant ; 156(3): 338-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26456072

RESUMO

Some ß-1,3-glucans and particularly sulfated laminarin (PS3) are known as resistance inducers (RIs) in grapevine against the downy mildew. However, their efficacy in vineyard is still often too low, which might be caused by a limited penetration through the leaf cuticle following spray application. We used (14) C-sucrose uptake experiments with grapevine leaves in order to select a surfactant as saccharide penetration enhancer. Our results showed that although sucrose foliar uptake was low, it was strongly enhanced by Dehscofix CO125 (DE), a highly ethoxylated surfactant. Fluorescent saccharides were then produced and laser scanning microscopy was used to analyze their foliar diffusion pattern in Arabidopsis thaliana and grapevine. Interestingly, sucrose and PS3 were seemingly able to penetrate the leaf cuticle only when formulated with DE. Diffusion could preferentially occur via stomata, anticlinal cell walls and trichomes. In grapevine, PS3 penetration rate was much higher on the stomateous abaxial surface of the leaf than on the adaxial surface. Finally, using DE allowed a higher level of downy mildew control by PS3, which corroborated diffusion observations. Our results have practical consequences for the improvement of treatments with saccharidic inducers on grape. That is, formulation of such RIs plays a critical role for their cuticular diffusion and consequently their efficacy. Also, spray application should preferentially target the abaxial surface of the leaves in order to maximize their penetration.


Assuntos
Resistência à Doença/efeitos dos fármacos , Óxido de Etileno/química , Oomicetos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Estômatos de Plantas/fisiologia , Polissacarídeos/farmacologia , Tensoativos/farmacologia , Vitis/microbiologia , Radioisótopos de Carbono , Colesterol/metabolismo , Difusão , Dissacarídeos/farmacologia , Fluorescência , Cinética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Polissacarídeos/química , Sacarose/metabolismo , Vitis/efeitos dos fármacos , Ceras/metabolismo
4.
Molecules ; 20(6): 9745-66, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26023937

RESUMO

ß-(1→3)-Glucans can be found as structural polysaccharides in cereals, in algae or as exo-polysaccharides secreted on the surfaces of mushrooms or fungi. Research has now established that ß-(1→3)-glucans can trigger different immune responses and act as efficient immunostimulating agents. They constitute prevalent sources of carbons for microorganisms after subsequent recognition by digesting enzymes. Nevertheless, mechanisms associated with both roles are not yet clearly understood. This review focuses on the variety of elucidated molecular interactions that involve these natural or synthetic polysaccharides and their receptors, i.e., Dectin-1, CR3, glycolipids, langerin and carbohydrate-binding modules.


Assuntos
Adjuvantes Imunológicos/metabolismo , Glucana 1,3-beta-Glucosidase/imunologia , Lectinas Tipo C/imunologia , Antígeno de Macrófago 1/imunologia , beta-Glucanas/metabolismo , Adjuvantes Imunológicos/genética , Agaricales/genética , Agaricales/metabolismo , Antígenos CD/genética , Antígenos CD/imunologia , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica , Glucana 1,3-beta-Glucosidase/genética , Glicolipídeos/imunologia , Glicolipídeos/metabolismo , Humanos , Lectinas Tipo C/genética , Antígeno de Macrófago 1/genética , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Receptores Depuradores/genética , Receptores Depuradores/imunologia , Transdução de Sinais , Estramenópilas/genética , Estramenópilas/metabolismo
5.
New Phytol ; 201(4): 1371-1384, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24491115

RESUMO

• The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. • The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H2O2 production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2 and AtFLS2. • In grapevine, flg22-triggered immune responses are conserved and led to partial resistance against Botrytis cinerea. Unlike flg22 peptides derived from Pseudomonas aeruginosa or Xanthomonas campestris, flg22 peptide derived from B. phytofirmans triggered only a small oxidative burst, weak and transient defense gene induction and no growth inhibition in grapevine. Although, in Arabidopsis, all the flg22 epitopes exhibited similar biological activities, the expression of VvFLS2 into the fls2 background conferred differential flg22 responses characteristic for grapevine. • These results demonstrate that VvFLS2 differentially recognizes flg22 from different bacteria, and suggest that flagellin from the beneficial PGPR B. phytofirmans has evolved to evade this grapevine immune recognition system.


Assuntos
Burkholderia/fisiologia , Endófitos/crescimento & desenvolvimento , Epitopos/imunologia , Flagelina/imunologia , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Vitis/imunologia , Vitis/microbiologia , Sequência de Aminoácidos , Arabidopsis/fisiologia , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Burkholderia/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Contagem de Colônia Microbiana , Simulação por Computador , Resistência à Doença/efeitos dos fármacos , Endófitos/efeitos dos fármacos , Flagelina/farmacologia , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/química , Especificidade da Espécie , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento
6.
Mol Plant Microbe Interact ; 22(8): 977-86, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19589073

RESUMO

Stomata, natural pores bordered by guard cells, regulate transpiration and gas exchanges between plant leaves and the atmosphere. These natural openings also constitute a way of penetration for microorganisms. In plants, the perception of potentially pathogenic microorganisms or elicitors of defense reactions induces a cascade of events, including H(2)O(2) production, that allows the activation of defense genes, leading to defense reactions. Similar signaling events occur in guard cells in response to the perception of abscisic acid (ABA), leading to stomatal closure. Moreover, few elicitors were reported to induce stomatal closure in Arabidopsis and Vicia faba leaves. Because responses to ABA and elicitors share common signaling events, it led us to question whether stomatal movements and H(2)O(2) production in guard cells could play a key role in elicitor-induced protection against pathogens that use stomata for infection. This study was performed using the grapevine-Plasmopara viticola pathosystem. Using epidermal peels, we showed that, as for ABA, the elicitor-induced stomatal closure is mediated by reactive oxygen species (ROS) production in guard cells. In plants, we observed that the protection against downy mildew induced by some elicitors is probably not due only to effects on stomatal movements or to a guard-cell-specific activation of ROS production.


Assuntos
Oomicetos/fisiologia , Estômatos de Plantas/fisiologia , Vitis/microbiologia , Ácido Abscísico/farmacologia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Luz , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Estômatos de Plantas/microbiologia , Estômatos de Plantas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Vitis/efeitos da radiação
7.
Front Plant Sci ; 10: 1117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620151

RESUMO

In a context of a sustainable viticulture, the implementation of innovative eco-friendly strategies, such as elicitor-triggered immunity, requires a deep knowledge of the molecular mechanisms underlying grapevine defense activation, from pathogen perception to resistance induction. During plant-pathogen interaction, the first step of plant defense activation is ensured by the recognition of microbe-associated molecular patterns, which are elicitors directly derived from pathogenic or beneficial microbes. Vitis vinifera, like other plants, can perceive elicitors of different nature, including proteins, amphiphilic glycolipid, and lipopeptide molecules as well as polysaccharides, thanks to their cognate pattern recognition receptors, the discovery of which recently began in this plant species. Furthermore, damage-associated molecular patterns are another class of elicitors perceived by V. vinifera as an invader's hallmark. They are mainly polysaccharides derived from the plant cell wall and are generally released through the activity of cell wall-degrading enzymes secreted by microbes. Elicitor perception and subsequent activation of grapevine immunity end in some cases in efficient grapevine resistance against pathogens. Using complementary approaches, several molecular markers have been identified as hallmarks of this induced resistance stage. This review thus focuses on the recognition of elicitors by Vitis vinifera describing the molecular mechanisms triggered from the elicitor perception to the activation of immune responses. Finally, we discuss the fact that the link between elicitation and induced resistance is not so obvious and that the formulation of resistance inducers remains a key step before their application in vineyards.

8.
Carbohydr Polym ; 225: 115224, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521294

RESUMO

Laminaran, a ß-(1→3)-glucan extracted from Laminaria digitata, is a known elicitor of plant defenses, but provides only low level of disease control in vineyard trials. In this context, laminaran was partly hydrophobized by grafting from 1.6 to 7.6 lauryl chains to the native saccharidic chain and the impact of sulfation of the hydrophobized glucans was studied. The activity of the different synthetized laminaran derivatives as antimicrobial agents against Plasmopara viticola, the causal agent of grape downy mildew, and as elicitors of defense reactions in planta, was evaluated. Our results showed that acylation imparts an antimicrobial activity to laminaran which is related to the degree of acylation, AL3, with 7.6 lauryl chains, being the most effective derivative. Sulfation of the acylated laminarans did not further increase the antimicrobial activity. Our results also demonstrated that the efficacy of AL3 against Plasmopara viticola was most likely due to the direct antimicrobial activity of the lauryl chains rather than to an elicitation of plant defenses.


Assuntos
Resistência à Doença , Glucanos/farmacologia , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Vitis , Anti-Infecciosos/farmacologia , Laminaria/metabolismo , Vitis/metabolismo , Vitis/microbiologia
9.
Front Plant Sci ; 9: 1725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546374

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous molecules that can activate the plant innate immunity. DAMPs can derive from the plant cell wall, which is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides. Fragments of pectin, called oligogalacturonides (OG), can be released after wounding or by pathogen-encoded cell wall degrading enzymes (CWDEs) such as polygalacturonases (PGs). OG are known to induce innate immune responses, including the activation of mitogen-activated protein kinases (MAPKs), production of H2O2, defense gene activation, and callose deposition. Thus, we hypothesized that xyloglucans (Xh), derived from the plant cell wall hemicellulose, could also act as an endogenous elicitor and trigger a signaling cascade similar to OG. Our results indicate that purified Xh elicit MAPK activation and immune gene expression in grapevine (Vitis vinifera) and Arabidopsis (Arabidopsis thaliana) to trigger induced resistance against necrotrophic (Botrytis cinerea) or biotrophic (Hyaloperonospora arabidopsidis) pathogens. Xh also induce resveratrol production in grapevine cell suspension and callose deposition in Arabidopsis which depends on the callose synthase PMR4. In addition, we characterized some signaling components of Xh-induced immunity using Arabidopsis mutants. Our data suggest that Xh-induced resistance against B. cinerea is dependent on the phytoalexin, salicylate, jasmonate, and ethylene pathways.

11.
Front Plant Sci ; 8: 101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261225

RESUMO

Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR.

12.
J Proteomics ; 156: 113-125, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28153682

RESUMO

Elicitors are known to trigger plant defenses in response to biotic stress, but do not systematically lead to effective resistance to pathogens. The reasons explaining such differences remain misunderstood. Therefore, elicitation and induced resistance (IR) were investigated through the comparison of two modified ß-1,3 glucans applied on grapevine (Vitis vinifera) leaves before and after inoculation with Plasmopara viticola, the causal agent of downy mildew. The sulfated (PS3) and the shortened (H13) forms of laminarin are both known to elicit defense responses whereas only PS3 induces resistance against downy mildew. The analysis of the 2-DE gel electrophoresis revealed that PS3 and H13 induced distinct proteomic profiles after treatment and pathogen inoculation. Our results point out that the PS3-induced resistance is associated with the activation of the primary metabolism especially on amino acids and carbohydrates pathways. In addition, few proteins, such as the 12-oxophytodienoate reductase (OPR-like) related to the OPDA pathway, and an Arsenite-resistance protein (Serrate-like protein) could be considered as useful markers of induced resistance. SIGNIFICANCE: One strategy to reduce the application of fungicides is the use of elicitors which induce plant defense responses. Nonetheless, the elicitors do not systematically lead to resistance against pathogens. The lack of correlation between plant defense activation and induced resistance (IR) requires the investigation of what makes the specificity of elicitor-IR. In this study, the two ß-glucans elicitors, sulfated (PS3) and short (H13) laminarins, were used in the grapevine/Plasmopara viticola interaction since only the first one leads to resistance against downy mildew. To disclose IR specificity, proteomic approach has been employed to compare the two treatments before and after P. viticola inoculation. The analysis of the 2-DE revealed that PS3 and H13 induced distinct proteomic profiles after treatment and pathogen inoculation. Significant increase of the number of proteins regulated by PS3, relative to both H13 and time-points, is correlated with the resistance process establishment. Our results point that the PS3-induced resistance requires the activation of the primary metabolism especially on amino acids and carbohydrates pathways. In addition, few proteins, such as the 12-oxophytodienoate reductase (OPR-like) related to the OPDA pathway, and an Arsenite-resistance protein (Serrate-like protein) could constitute useful markers of PS3 induced resistance.


Assuntos
Resistência à Doença , Peronospora/patogenicidade , Doenças das Plantas/microbiologia , Proteômica/métodos , Vitis/microbiologia , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Proteínas de Plantas/efeitos dos fármacos , Vitis/fisiologia
13.
Front Plant Sci ; 6: 350, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042139

RESUMO

Inducing resistance in plants by the application of elicitors of defense reactions is an attractive plant protection strategy, particularly for grapevine (Vitis vinifera), which is susceptible to severe fungal diseases. Although induced resistance (IR) can be successful under controlled conditions, in most cases, IR is not sufficiently effective for practical disease control under outdoor conditions. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers to identify factors, such as physiological and environmental factors, that can impact IR in the vineyard. Volatile organic compounds (VOCs) are well-known plant defense compounds that have received little or no attention to date in the case of grape-pathogen interactions. This prompted us to investigate whether an elicitor, the sulfated laminarin (PS3), actually induces the production of VOCs in grapevine. An online analysis (proton-transfer-reaction quadrupole mass spectrometry) of VOC emissions in dynamic cuvettes and passive sampling in gas-tight bags with solid-phase microextraction-GC-MS under greenhouse conditions showed that PS3 elicited the emission of VOCs. Some of them, such as (E,E)-α-farnesene, may be good candidates as biomarkers of elicitor-IR, whereas methyl salicylate appears to be a biomarker of downy mildew infection. A negative correlation between VOC emission and disease severity suggests a positive role of VOCs in grape defense against diseases.

14.
Mol Plant Microbe Interact ; 16(12): 1118-28, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14651345

RESUMO

Grapevine (Vitis vinifera L.) is susceptible to many pathogens, such as Botrytis cinerea, Plasmopara viticola, Uncinula necator, and Eutypa lata. Phytochemicals are used intensively in vineyards to limit pathogen infections, but the appearance of pesticide-resistant pathogen strains and a desire to protect the environment require that alternative strategies be found. In the present study, the beta-1,3-glucan laminarin derived from the brown algae Laminaria digitata was shown both to be an efficient elicitor of defense responses in grapevine cells and plants and to effectively reduce B. cinerea and P. viticola development on infected grapevine plants. Defense reactions elicited by laminarin in grapevine cells include calcium influx, alkalinization of the extracellular medium, an oxidative burst, activation of two mitogen-activated protein kinases, expression of 10 defense-related genes with different kinetics and intensities, increases in chitinase and beta-1,3-glucanase activities, and the production of two phytoalexins (resveratrol and epsilon-viniferin). Several of these effects were checked and confirmed in whole plants. Laminarin did not induce cell death. When applied to grapevine plants, laminarin reduced infection by B. cinerea and P. viticola by approximately 55 and 75%, respectively. Our data describing a large set of defense reactions in grapevine indicate that the activation of defense responses using elicitors could be a valuable strategy to protect plants against pathogens.


Assuntos
Botrytis/patogenicidade , Oomicetos/patogenicidade , Polissacarídeos/fisiologia , Vitis/microbiologia , Sequência de Bases , Morte Celular/fisiologia , Quitinases/metabolismo , Primers do DNA , Regulação da Expressão Gênica de Plantas , Glucanos , Glicosídeo Hidrolases/metabolismo , Extratos Vegetais/biossíntese , Sesquiterpenos , Transdução de Sinais , Terpenos , Vitis/genética , Vitis/fisiologia , Fitoalexinas
15.
Front Plant Sci ; 5: 592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408694

RESUMO

Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of "PAMP, MAMP, and DAMP (Pathogen-, Microbe-, Damage-Associated Molecular Patterns) type" oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure/activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.

16.
PLoS One ; 9(2): e88145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516597

RESUMO

Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The ß-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i) the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii) grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i) PS3 was unable to elicit reactive oxygen species (ROS) production, cytosolic Ca(2+) concentration variations, mitogen-activated protein kinase (MAPK) activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii) PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA) and jasmonate-(JA)-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.


Assuntos
Resistência à Doença/genética , Glucanos/farmacologia , Oomicetos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Transcriptoma/genética , Vitis/imunologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oomicetos/efeitos dos fármacos , Oxilipinas/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Vitis/genética , Vitis/parasitologia , Vitis/fisiologia , beta-Glucanas/farmacologia
17.
J Microbiol Methods ; 95(2): 235-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994353

RESUMO

The grapevine downy mildew (Plasmopara viticola) provokes severe damages and destroys the harvest in the absence of an effective protection. Numerous fungicide treatments are thus generally necessary. To promote a sustainable production, alternative strategies of protection including new antifungal molecules, resistant genotypes or elicitor-induced resistance are under trial. To evaluate the relevance of these strategies, resistance tests are required. In this context, three image analysis methods were developed to read the results of tests performed to assess P. viticola sporulation and mycelial development, and H(2)O(2) production in leaves. They have been validated using elicitors of plant defenses. These methods are reliable, innovative, rapid, and their modular concept allows their further adaptation to other host-pathogen systems.


Assuntos
Peróxido de Hidrogênio/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia , Vitis/parasitologia , Resistência à Doença , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Vitis/metabolismo
18.
New Phytol ; 173(4): 832-840, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17286831

RESUMO

In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpiration. This deregulation was restricted to the colonized area, was not systemic and occurred before the appearance of symptoms. Cytological observations indicated that stomatal lock-open was not related to mechanical forces resulting from the presence of the pathogen in the substomatal cavity. In contrast to healthy leaves, stomatal closure in excised infected leaves could not be induced by a water deficit or abscisic acid (ABA) treatment. However, ABA induced stomatal closure in epidermal peels from infected leaves, indicating that guard cells remained functional. These data indicate that the oomycete deregulates guard cell functioning, causing significant water losses. This effect could be attributed to a nonsystemic compound, produced by the oomycete or by the infected plant, which inhibits stomatal closure or induces stomatal opening; or a reduction of the back-pressure exerted by surrounding epidermal cells. Both hypotheses are under investigation.


Assuntos
Oomicetos/fisiologia , Epiderme Vegetal/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Vitis/microbiologia , Ácido Abscísico/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/microbiologia , Folhas de Planta/citologia , Vitis/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA