Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2002): 20230638, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403497

RESUMO

The stem-group euarthropod Anomalocaris canadensis is one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability of A. canadensis to use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining three-dimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse an A. canadensis feeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest that A. canadensis was an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle of A. canadensis and that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels.


Assuntos
Artrópodes , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Fósseis , Cadeia Alimentar , Estado Nutricional , Comportamento Predatório
2.
Proc Biol Sci ; 289(1968): 20212093, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135344

RESUMO

Once considered 'weird wonders' of the Cambrian, the emblematic Burgess Shale animals Anomalocaris and Opabinia are now recognized as lower stem-group euarthropods and have provided crucial data for constraining the polarity of key morphological characters in the group. Anomalocaris and its relatives (radiodonts) had worldwide distribution and survived until at least the Devonian. However, despite intense study, Opabinia remains the only formally described opabiniid to date. Here we reinterpret a fossil from the Wheeler Formation of Utah as a new opabiniid, Utaurora comosa nov. gen. et sp. By visualizing the sample of phylogenetic topologies in treespace, our results fortify support for the position of U. comosa beyond the nodal support traditionally applied. Our phylogenetic evidence expands opabiniids to multiple Cambrian stages. Our results underscore the power of treespace visualization for resolving imperfectly preserved fossils and expanding the known diversity and spatio-temporal ranges within the euarthropod lower stem group.


Assuntos
Artrópodes , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Fósseis , Filogenia
3.
Bioessays ; 42(6): e1900243, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32338399

RESUMO

It is hypothesized that iron from biological tissues, liberated during decay, may have played a role in inhibiting loss of anatomical information during fossilization of extinct organisms. Most tissues in the animal kingdom contain iron in different forms. A widely distributed iron-bearing molecule is ferritin, a globular protein that contains iron crystallites in the form of ferrihydrite minerals. Iron concentrations in ferritin are high and ferrihydrites are extremely reactive. When ancient animals are decaying on the sea floor under anoxic environmental conditions, ferrihydrites may initialize the selective replication of some tissues in pyrite FeS2 . This model explains why some labile tissues are preserved, while other more resistant structures decay and are absent in many fossils. A major implication of this hypothesis is that structures described as brains in Cambrian arthropods are not fossilization artifacts, but are instead a source of information on anatomical evolution at the dawn of complex animal life.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Encéfalo , Ferro , Preservação Biológica
4.
Proc Biol Sci ; 288(1953): 20210464, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157876

RESUMO

The biological pump is crucial for transporting nutrients fixed by surface-dwelling primary producers to demersal animal communities. Indeed, the establishment of an efficient biological pump was likely a key factor enabling the diversification of animals over 500 Myr ago during the Cambrian explosion. The modern biological pump operates through two main vectors: the passive sinking of aggregates of organic matter, and the active vertical migration of animals. The coevolution of eukaryotes and sinking aggregates is well understood for the Proterozoic and Cambrian; however, little attention has been paid to the establishment of the vertical migration of animals. Here we investigate the morphological variation and hydrodynamic performance of the Cambrian euarthropod Isoxys. We combine elliptical Fourier analysis of carapace shape with computational fluid dynamics simulations to demonstrate that Isoxys species likely occupied a variety of niches in Cambrian oceans, including vertical migrants, providing the first quantitative evidence that some Cambrian animals were adapted for vertical movement in the water column. Vertical migration was one of several early Cambrian metazoan innovations that led to the biological pump taking on a modern-style architecture over 500 Myr ago.


Assuntos
Evolução Biológica , Fósseis , Animais , Proteínas de Membrana Transportadoras , Oceanos e Mares
5.
Nature ; 522(7554): 77-80, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25762145

RESUMO

Exceptionally preserved fossils from the Palaeozoic era provide crucial insights into arthropod evolution, with recent discoveries bringing phylogeny and character homology into sharp focus. Integral to such studies are anomalocaridids, a clade of stem arthropods whose remarkable morphology illuminates early arthropod relationships and Cambrian ecology. Although recent work has focused on the anomalocaridid head, the nature of their trunk has been debated widely. Here we describe new anomalocaridid specimens from the Early Ordovician Fezouata Biota of Morocco, which not only show well-preserved head appendages providing key ecological data, but also elucidate the nature of anomalocaridid trunk flaps, resolving their homology with arthropod trunk limbs. The new material shows that each trunk segment bears a separate dorsal and ventral pair of flaps, with a series of setal blades attached at the base of the dorsal flaps. Comparisons with other stem lineage arthropods indicate that anomalocaridid ventral flaps are homologous with lobopodous walking limbs and the endopod of the euarthropod biramous limb, whereas the dorsal flaps and associated setal blades are homologous with the flaps of gilled lobopodians (for example, Kerygmachela kierkegaardi, Pambdelurion whittingtoni) and exites of the 'Cambrian biramous limb'. This evidence shows that anomalocaridids represent a stage before the fusion of exite and endopod into the 'Cambrian biramous limb', confirming their basal placement in the euarthropod stem, rather than in the arthropod crown or with cycloneuralian worms. Unlike other anomalocaridids, the Fezouata taxon combines head appendages convergently adapted for filter-feeding with an unprecedented body length exceeding 2 m, indicating a new direction in the feeding ecology of the clade. The evolution of giant filter-feeding anomalocaridids may reflect the establishment of highly developed planktic ecosystems during the Great Ordovician Biodiversification Event.


Assuntos
Artrópodes/anatomia & histologia , Evolução Biológica , Extremidades/anatomia & histologia , Fósseis , Brânquias/anatomia & histologia , Animais , Artrópodes/classificação , Cabeça/anatomia & histologia , Marrocos , Filogenia
6.
Proc Natl Acad Sci U S A ; 115(21): 5323-5331, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29784780

RESUMO

Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.


Assuntos
Artrópodes/classificação , Evolução Biológica , Fósseis , Animais , Artrópodes/anatomia & histologia , Biota , Filogenia
7.
BMC Evol Biol ; 18(1): 147, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30268090

RESUMO

BACKGROUND: Extended parental care is a complex reproductive strategy in which progenitors actively look after their offspring up to - or beyond - the first juvenile stage in order to maximize their fitness. Although the euarthropod fossil record has produced several examples of brood-care, the appearance of extended parental care within this phylum remains poorly constrained given the scarcity of developmental data for Palaeozoic stem-group representatives that would link juvenile and adult forms in an ontogenetic sequence. RESULTS: Here, we describe the post-embryonic growth of Fuxianhuia protensa from the early Cambrian Chengjiang Lagerstätte in South China. Our data demonstrate anamorphic post-embryonic development for F. protensa, in which new tergites were sequentially added from a posterior growth zone, the number of tergites varies from eight to 30. The growth of F. protensa is typified by the alternation between segment addition, followed by the depletion of the anteriormost abdominal segment into the thoracic region. The transformation of abdominal into thoracic tergite is demarcated by the development of laterally tergopleurae, and biramous walking legs. The new ontogeny data leads to the recognition of the rare Chengjiang euarthropod Pisinnocaris subconigera as a junior synonym of Fuxianhuia. Comparisons between different species of Fuxianhuia and with other genera within Fuxianhuiida suggest that heterochrony played a prominent role in the morphological diversification of fuxianhuiids. Functional analogy with the flexible trunk ontogeny of Cambrian and Silurian olenimorphic trilobites suggests an adaptation to sporadic low oxygen conditions in Chengjiang deposits for F. protensa. Finally, understanding the growth of F. protensa allows for the interpretation of an exceptional life assemblage consisting of a sexually mature adult alongside four ontogenetically coeval juveniles, which constitutes the oldest occurrence of extended parental care by prolonged cohabitation in the panarthropod fossil record. CONCLUSIONS: Our findings constitute the most detailed characterization of the post-embryonic development in a soft-bodied upper stem-group euarthropod available to date. The new ontogeny data illuminates the systematics, trunk segmentation and palaeoecology of F. protensa, offers insights on the macroevolutionary processes involved in the diversification of this clade, and contributes towards an improved understanding of complex post-embryonic reproductive ecology in Cambrian euarthropods.


Assuntos
Artrópodes/crescimento & desenvolvimento , Fósseis , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , China , Fatores de Tempo
8.
Bioessays ; 38(10): 981-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27545417

RESUMO

A 365 million year-old trilobite moult-carcass assemblage was described by Blazejowski et al. (2015) as the oldest direct evidence of moulting in the arthropod fossil record. Unfortunately, their suppositions are insufficiently supported by the data provided. Instead, the morphology, configuration and preservational context of the highly fossiliferous locality (Kowala Quarry, Poland) suggest that the specimen consists of two overlapping, queued carcasses. The wider fossil record of moulting actually extends back 520 million years, providing an unparalleled opportunity to study behaviour, ecology and development in early animals. Taking cues from modern analogues, it is possible to quantify precise details about moulting behaviour to determine broad-scale evolutionary trends, ontogenetic sequences and morphological selection pressures. In this review, we argue that this rich source of data has been underused in evolutionary studies, though has great potential for investigating the life history and evolution of arthropods in deep time.


Assuntos
Artrópodes/anatomia & histologia , Muda , Animais , Evolução Biológica , Ecologia , Fósseis
9.
BMC Evol Biol ; 17(1): 208, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854872

RESUMO

BACKGROUND: Segmental composition and homologies of the head of stem-group Euarthropoda have been the foci of recent studies on arthropod origins. An emerging hypothesis suggests that upper-stem group euarthropods possessed a three-segmented head/brain, including an ocular segment (protocerebrum) followed by the deutocerebrum with associated antennae/raptorial limbs and the tritocerebrum, while in the lower stem, head structures of Radiodonta are wholly associated with the protocerebrum and its preceding part. However, this hypothesis is incompletely tested because detailed knowledge on the head components of radiodontans is patchy, and informative articulated specimens are lacking for many taxa. Amplectobelua symbrachiata is the most common radiodontan species in the Chengjiang biota (ca. 520 Ma), normally known as isolated frontal appendages. Here we present detailed descriptions of new articulated specimens that elucidate the morphology and function of its head structures, and discuss their implications for hypotheses about euarthropod cephalic organisation. RESULTS: In addition to a central oval head shield, A. symbrachiata also bears a pair of P-elements connected by an elongated rod. The mouth consists of sets of smooth and tuberculate plates, in contrast to the typical radial oral cones of other radiodontans. Previously identified 'palm-like teeth' are located external to the mouth in the posterior head region, and are interpreted as segmental gnathobase-like structures (GLSs) associated with at least three reduced transitional flaps in a one (pair)-to-one (pair) pattern, consistent with an appendicular nature. Comparisons with other panarthropods show that GLSs are morphologically similar to the mandibles and other gnathobasic mouthparts of euarthropods, as well as to the jaws of onychophorans, indicating their functional integration into the feeding activities of A. symbrachiata. CONCLUSIONS: The functional head of A. symbrachiata must include the reduced transitional segments (and their associated structures), which have been identified in several other radiodontans. This functional view supports the idea that the integration of segments (and associated appendages) into the head region, probably driven by feeding, occurred along the euarthropod stem-lineage. However, the number of reduced transitional segments varies between different groups and it remains uncertain whether GLSs represent proximal or distal parts of appendages. Our study is the first description of appendicular structures other than the frontal appendages in the functional head region of radiodontans, revealing novel feeding structures in the morphological transition from the lower- to the upper- stem-group of Euarthropoda.


Assuntos
Artrópodes/anatomia & histologia , Cabeça/anatomia & histologia , Animais , Artrópodes/classificação , Extremidades/anatomia & histologia , Fósseis , Boca/anatomia & histologia , Paleontologia
10.
Nat Commun ; 15(1): 3808, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714651

RESUMO

Euchelicerata is a clade of arthropods comprising horseshoe crabs, scorpions, spiders, mites and ticks, as well as the extinct eurypterids (sea scorpions) and chasmataspidids. The understanding of the ground plans and relationships between these crown-group euchelicerates has benefited from the discovery of numerous fossils. However, little is known regarding the origin and early evolution of the euchelicerate body plan because the relationships between their Cambrian sister taxa and synziphosurines, a group of Silurian to Carboniferous stem euchelicerates with chelicerae and an unfused opisthosoma, remain poorly understood owing to the scarce fossil record of appendages. Here we describe a synziphosurine from the Lower Ordovician (ca. 478 Ma) Fezouata Shale of Morocco. This species possesses five biramous appendages with stenopodous exopods bearing setae in the prosoma and a fully expressed first tergite in the opisthosoma illuminating the ancestral anatomy of the group. Phylogenetic analyses recover this fossil as a member of the stem euchelicerate family Offacolidae, which is characterized by biramous prosomal appendages. Moreover, it also shares anatomical features with the Cambrian euarthropod Habelia optata, filling the anatomical gap between euchelicerates and Cambrian stem taxa, while also contributing to our understanding of the evolution of euchelicerate uniramous prosomal appendages and tagmosis.


Assuntos
Artrópodes , Evolução Biológica , Fósseis , Filogenia , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Artrópodes/genética , Marrocos , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/genética , Caranguejos Ferradura/classificação , Biodiversidade
11.
Swiss J Palaeontol ; 143(1): 26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006952

RESUMO

Fossilization, or the transition of an organism from the biosphere to the geosphere, is a complex mechanism involving numerous biological and geological variables. Bacteria are one of the most significant biotic players to decompose organic matter in natural environments, early on during fossilization. However, bacterial processes are difficult to characterize as many different abiotic conditions can influence bacterial efficiency in degrading tissues. One potentially important variable is the composition and nature of the sediment on which a carcass is deposited after death. We experimentally examined this by decaying the marine shrimp Palaemon varians underwater on three different clay sediments. Samples were then analyzed using 16S ribosomal RNA sequencing to identify the bacterial communities associated with each clay system. Results show that samples decaying on the surface of kaolinite have a lower bacterial diversity than those decaying on the surface of bentonite and montmorillonite, which could explain the limited decay of carcasses deposited on this clay. However, this is not the only role played by kaolinite, as a greater proportion of gram-negative over gram-positive bacteria is observed in this system. Gram-positive bacteria are generally thought to be more efficient at recycling complex polysaccharides such as those forming the body walls of arthropods. This is the first experimental evidence of sediments shaping an entire bacterial community. Such interaction between sediments and bacteria might have contributed to arthropods' exquisite preservation and prevalence in kaolinite-rich Lagerstätten of the Cambrian Explosion. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00324-7.

12.
Nat Ecol Evol ; 8(4): 651-662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38337049

RESUMO

Early Palaeozoic sites with soft-tissue preservation are predominantly found in Cambrian rocks and tend to capture past tropical and temperate ecosystems. In this study, we describe the diversity and preservation of the Cabrières Biota, a newly discovered Early Ordovician Lagerstätte from Montagne Noire, southern France. The Cabrières Biota showcases a diverse polar assemblage of both biomineralized and soft-bodied organisms predominantly preserved in iron oxides. Echinoderms are extremely scarce, while sponges and algae are abundantly represented. Non-biomineralized arthropod fragments are also preserved, along with faunal elements reminiscent of Cambrian Burgess Shale-type ecosystems, such as armoured lobopodians. The taxonomic diversity observed in the Cabrières Biota mixes Early Ordovician Lagerstätten taxa with Cambrian forms. By potentially being the closest Lagerstätte to the South Pole, the Cabrières Biota probably served as a biotic refuge amid the high-water temperatures of the Early Ordovician, and shows comparable ecological structuring to modern polar communities.


Assuntos
Artrópodes , Ecossistema , Animais , Fósseis , Biota , Equinodermos
13.
Swiss J Palaeontol ; 142(1): 20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719137

RESUMO

Concretions are an interesting mode of preservation that can occasionally yield fossils with soft tissues. To properly interpret these fossils, an understanding of their fossilization is required. Probabilistic models are useful tools to identify variations between different Konservat-Lagerstätten that are separated spatially and temporally. However, the application of probabilistic modeling has been limited to Early Paleozoic Konservat-Lagerstätten preserved in shales. In this paper, the patterns of preservation of three concretionary Konservat-Lagerstätten-the Carboniferous Mazon Creek (USA) and Montceau-les-Mines (France), and the Silurian Herefordshire Lagerstätte (UK)-are analyzed using a statistical approach. It is demonstrated that the degree of biotic involvement, i.e., the degree to which a carcass dictates its own preservation, is connected to internal organ conditional probabilities-the probabilities of finding an internal organ associated with another structure such as biomineralized, sclerotized, cuticularized, or cellular body walls. In concretions that are externally forced with little biological mediation (e.g., Herefordshire), all internal organ conditional probabilities are uniform. As biological mediation in concretion formation becomes more pronounced, heterogeneities in conditional probabilities are introduced (e.g., Montceau-les-Mines and Mazon Creek). The three concretionary sites were also compared with previously investigated Konservat-Lagerstätten preserving fossils in shales to demonstrate how the developed probability framework aids in understanding the broad-scale functioning of preservation in Konservat-Lagerstätten. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00284-4.

14.
Naturwissenschaften ; 99(6): 501-4, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22476406

RESUMO

The Cambro-Ordovician anomalocaridids are large ecdysozoans commonly regarded as ancestors of the arthropods and apex predators. Predation is indicated partly by the presence of an unusual "peytoia"-type oral cone, which is a tetraradial outer ring of 32 plates, four of which are enlarged and in perpendicular arrangement. This oral cone morphology was considered a highly consistent and defining characteristic of well-known Burgess Shale taxa. It is here shown that Anomalocaris has a different oral cone, with only three large plates and a variable number of smaller and medium plates. Its functional morphology suggests that suction, rather than biting, was used for food ingestion, and that anomalocaridids in general employed a range of different scavenging and predatory feeding strategies. Removing anomalocaridids from the position of highly specialized trilobite predators forces a reconsideration of the ecological structure of the earliest marine animal communities in the Cambrian.


Assuntos
Artrópodes/anatomia & histologia , Fósseis , Animais , Boca/anatomia & histologia
15.
Philos Trans R Soc Lond B Biol Sci ; 377(1847): 20210034, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125000

RESUMO

Biramous appendages are a common feature among modern marine arthropods that evolved deep in arthropod phylogeny. The branched appendage of Cambrian arthropods has long been considered as the ancient biramous limb, sparking numerous investigations on its origin and evolution. Here, we report a new arthropod, Erratus sperare gen. et sp. nov., from the Lower Cambrian (Stage 3, 520 Ma) Chengjiang biota of Yunnan, China, with unique trunk appendages formed of lateral anomalocaridid-type flaps and ventral subconical endopods. These appendages represent an intermediate stage of biramous limb evolution, i.e. from 'two pairs of flap appendages' in radiodonts to 'flap + endopod' in Erratus, to 'exopod + endopod' in the rest of carapace-bearing arthropods that populate the basal region of the upper-stem lineage arthropods (deuteropods). The new species occupies a phylogenetic position at the first node closer to deuteropods than to radiodonts, and therefore pinpoints the earliest occurrence of the endopod within Deuteropoda. The primitive endopod is weakly sclerotized, and has unspecialized segments without endites or claw. The findings might support previous claims that the outer branch of the biramous limb of fossil marine arthropods, such as trilobites, is not a true exopod, but is instead a modified exite. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.


Assuntos
Artrópodes , Exoesqueleto , Animais , Evolução Biológica , China , Fósseis , Filogenia
16.
Sci Rep ; 12(1): 3852, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264650

RESUMO

The Early Ordovician is a key interval for our understanding of the evolution of life on Earth as it lays at the transition between the Cambrian Explosion and the Ordovician Radiation and because the fossil record of the late Cambrian is scarce. In this study, assembly processes of Early Ordovician trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), the Montagne Noire (France), and the Cordillera Oriental (Argentina) are explored. The results show that dispersal increased diachronically in trilobite communities during the Early Ordovician. Dispersal did not increase for echinoderms. Dispersal was most probably proximally triggered by the planktic revolution, the fall in seawater temperatures, changes in oceanic circulation, with an overall control by tectonic frameworks and phylogenetic constraints. The diachronous increase in dispersal within trilobite communities in the Early Ordovician highlights the complexity of ecosystem structuring during the early stages of the Ordovician Radiation. As Early Ordovician regional dispersal was followed by well-documented continental dispersal in the Middle/Late Ordovician, it is possible to consider that alongside a global increase in taxonomic richness, the Ordovician Radiation is also characterized by a gradual increase in dispersal.


Assuntos
Ecossistema , Fósseis , Animais , Evolução Biológica , Planeta Terra , Equinodermos , Filogenia
17.
Sci Rep ; 12(1): 20773, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513689

RESUMO

The Fezouata Biota (Morocco) is a unique Early Ordovician fossil assemblage. The discovery of this biota revolutionized our understanding of Earth's early animal diversifications-the Cambrian Explosion and the Ordovician Radiation-by suggesting an evolutionary continuum between both events. Herein, we describe Taichoute, a new fossil locality from the Fezouata Shale. This locality extends the temporal distribution of fossil preservation from this formation into the upper Floian, while also expanding the range of depositional environments to more distal parts of the shelf. In Taichoute, most animals were transported by density flows, unlike the in-situ preservation of animals recovered in previously investigated Fezouata sites. Taichoute is dominated by three-dimensionally preserved, and heavily sclerotized fragments of large euarthropods-possibly representing nektobenthic/nektic bivalved taxa and/or hurdiid radiodonts. Resolving whether this dominance reflects a legitimate aspect of the original ecosystem or a preservational bias requires an in-depth assessment of the environmental conditions at this site. Nevertheless, Taichoute provides novel preservational and palaeontological insights during a key evolutionary transition in the history of life on Earth.


Assuntos
Ecossistema , Fósseis , Animais , Biota , Evolução Biológica , Minerais
18.
PeerJ ; 9: e10509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552709

RESUMO

Radiodonts have long been known from Cambrian deposits preserving non-biomineralizing organisms. In Utah, the presence of these panarthropods in the Spence and Wheeler (House Range and Drum Mountains) biotas is now well-documented. Conversely, radiodont occurrences in the Marjum Formation have remained scarce. Despite the large amount of work undertaken on its diverse fauna, only one radiodont (Peytoia) has been reported from the Marjum Biota. In this contribution we quadruple the known radiodont diversity of the Marjum fauna, with the description of the youngest members of two genera, Caryosyntrips and Pahvantia, and that of a new taxon Buccaspinea cooperi gen. et sp. nov. This new taxon can be identified from its large oral cone bearing robust hooked teeth with one, two, or three cusps, and by the unique endite morphology and organisation of its frontal appendages. Appendages of at least 12 podomeres bear six recurved plate-like endites proximal to up to four spiniform distal endites. Pahvantia hastata specimens from the Marjum Formation are particularly large, but otherwise morphologically indistinguishable from the carapace elements of this species found in the Wheeler Formation. One of the two new Caryosyntrips specimens can be confidently assigned to C. camurus. The other bears the largest spines relative to appendage length recorded for this genus, and possesses endites of variable size and unequal spacing, making its taxonomic assignment uncertain. Caryosyntrips, Pahvantia, and Peytoia are all known from the underlying Wheeler Formation, whereas isolated appendages from the Spence Shale and the Wheeler Formation, previously assigned to Hurdia, are tentatively reidentified as Buccaspinea. Notably, none of these four genera occurs in the overlying Weeks Formation, providing supporting evidence of a faunal restructuring around the Drumian-Guzhangian boundary. The description of three additional nektonic taxa from the Marjum Formation further documents the higher relative proportion of free-swimming species in this biota compared to those of the Wheeler and Weeks Lagerstätten. This could be related to a moderate deepening of the basin and/or changing regional ocean circulation at this time.

19.
Sci Rep ; 10(1): 3574, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107415

RESUMO

Crustacean eggs are rare in the fossil record. Here we report the exquisite preservation of a fossil polychelidan embedded within an unbroken nodule from the Middle Jurassic La Voulte-sur-Rhône Lagerstätte (France) and found with hundreds of eggs attached to the pleon. This specimen belongs to a new species, Palaeopolycheles nantosueltae sp. nov. and offers unique clues to discuss the evolution of brooding behaviour in polychelidan lobsters. In contrast to their development, which now relies on a long-lived planktic larval stage that probably did not exist in the early evolutionary steps of the group, the brood size of polychelidan lobsters seems to have remained unchanged and comparatively small since the Jurassic. This finding is at odds with reproductive strategies in other lobster groups, in which a long-lived planktic larval stage is associated with a large brood size.


Assuntos
Nephropidae/classificação , Óvulo/química , Animais , Evolução Biológica , Fósseis/anatomia & histologia , Fósseis/história , França , História Antiga , Nephropidae/anatomia & histologia , Nephropidae/genética , Nephropidae/crescimento & desenvolvimento , Óvulo/classificação , Óvulo/crescimento & desenvolvimento , Paleontologia
20.
J Exp Zool B Mol Dev Evol ; 312(7): 679-85, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19405098

RESUMO

What drives evolution? This was one of the main questions raised at the final ZOONET meeting in Budapest, Hungary, in November 2008. The meeting marked the conclusion of ZOONET, an EU-funded Marie-Curie Research Training Network comprising nine research groups from all over Europe (Max Telford, University College London; Michael Akam, University of Cambridge; Detlev Arendt, EMBL Heidelberg; Maria Ina Arnone, Stazione Zoologica Anton Dohrn Napoli; Michalis Averof, IMBB Heraklion; Graham Budd, Uppsala University; Richard Copley, University of Oxford; Wim Damen, University of Cologne; Ernst Wimmer, University of Göttingen). ZOONET meetings and practical courses held during the past four years provided researchers from diverse backgrounds--bioinformatics, phylogenetics, embryology, palaeontology, and developmental and molecular biology--the opportunity to discuss their work under a common umbrella of evolutionary developmental biology (Evo Devo). The Budapest meeting emphasized in-depth discussions of the key concepts defining Evo Devo, and bringing together ZOONET researchers with external speakers who were invited to present their views on the evolution of animal form. The discussion sessions addressed four main topics: the driving forces of evolution, segmentation, fossils and phylogeny, and the future of Evo Devo.


Assuntos
Biodiversidade , Padronização Corporal/fisiologia , Biologia do Desenvolvimento/tendências , Evolução Molecular , Fósseis , Animais , Genética Populacional , Hungria , Morfogênese , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA