Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Biol Chem ; 299(10): 105256, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716703

RESUMO

The glycosyltransferase WaaG in Pseudomonas aeruginosa (PaWaaG) is involved in the synthesis of the core region of lipopolysaccharides. It is a promising target for developing adjuvants that could help in the uptake of antibiotics. Herein, we have determined structures of PaWaaG in complex with the nucleotide-sugars UDP-glucose, UDP-galactose, and UDP-GalNAc. Structural comparison with the homolog from Escherichia coli (EcWaaG) revealed five key differences in the sugar-binding pocket. Solution-state NMR analysis showed that WT PaWaaG specifically hydrolyzes UDP-GalNAc and unlike EcWaaG, does not hydrolyze UDP-glucose. Furthermore, we found that a PaWaaG mutant (Y97F/T208R/N282A/T283A/T285I) designed to resemble the EcWaaG sugar binding site, only hydrolyzed UDP-glucose, underscoring the importance of the identified amino acids in substrate specificity. However, neither WT PaWaaG nor the PaWaaG mutant capable of hydrolyzing UDP-glucose was able to complement an E. coli ΔwaaG strain, indicating that more remains to be uncovered about the function of PaWaaG in vivo. This structural and biochemical information will guide future structure-based drug design efforts targeting PaWaaG.

2.
Glycobiology ; 33(4): 289-300, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36239409

RESUMO

The structure of the O-antigen from the international reference strain Escherichia coli O93:-:H16 has been determined. A nonrandom modal chain-length distribution was observed for the lipopolysaccharide, a pattern which is typical when long O-specific polysaccharides are expressed. By a combination of (i) bioinformatics information on the gene cluster related to O-antigen synthesis including putative function on glycosyl transferases, (ii) the magnitude of NMR coupling constants of anomeric protons, and (iii) unassigned 2D 1H, 13C-HSQC, and 1H,1H-TOCSY NMR spectra it was possible to efficiently elucidate the structure of the carbohydrate polymer in an automated fashion using the computer program CASPER. The polysaccharide also carries O-acetyl groups and their locations were determined by 2D NMR experiments showing that ~½ of the population was 2,6-di-O-acetylated, ~» was 2-O-acetylated, whereas ~» did not carry O-acetyl group(s) in the 3-O-substituted mannosyl residue of the repeating unit. The structure of the tetrasaccharide repeating unit of the O-antigen is given by: →2)-ß-d-Manp-(1→3)-ß-d-Manp2Ac6Ac-(1→4)-ß-d-GlcpA-(1→3)-α-d-GlcpNAc-(1→, which should also be the biological repeating unit and it shares structural elements with capsular polysaccharides from E. coli K84 and K50. The structure of the acidic O-specific polysaccharide from Cellulophaga baltica strain NN015840T differs to that of the O-antigen from E. coli O93 by lacking the O-acetyl group at O6 of the O-acetylated mannosyl residue.


Assuntos
Escherichia coli , Antígenos O , Antígenos O/genética , Antígenos O/química , Escherichia coli/genética , Escherichia coli/química , Lipopolissacarídeos , Família Multigênica , Espectroscopia de Ressonância Magnética
3.
Curr Genet ; 69(4-6): 277-287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938343

RESUMO

pET expression plasmids are widely used for producing recombinant proteins in Escherichia coli. Selection and maintenance of cells harboring a pET plasmid are possible using either a Tn3.1-type genetic fragment (which encodes a ß-lactamase and confers resistance to ß-lactam antibiotics) or a Tn903.1-type genetic fragment (which encodes an aminoglycoside-3'-phosphotransferase and confers resistance aminoglycoside antibiotics). Herein we have investigated how efficiently pET plasmids are maintained using these two fragments. The study reveals that pET plasmids are efficiently maintained with both Tn3.1 and Tn903.1 genetic fragments prior to the induction of recombinant protein production, and over short induction times (i.e., 2 h). However, over longer induction times (i.e., 20 h), the efficiency of plasmid maintenance depends on the host strain used, and the type of antibiotic selection cassette used. Based on our collective observations, we have 2 general tips for efficiently maintaining pET plasmids during recombinant production experiments. Tip #1: Use a strain with lowered levels of the T7 RNA polymerase, such as C41(DE3). pET plasmids will be efficiently maintained over long induction times with both the Tn3.1 and Tn903.1 genetic fragments, regardless of whether antibiotics are present during cultivation. Tip #2: If a strain with higher levels of T7 RNA polymerase strain is necessary, such as BL21(DE3)), keep induction times short or use a plasmid containing a Tn903.1-type fragment and select with kanamycin.


Assuntos
Antibacterianos , Escherichia coli , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Antibacterianos/farmacologia , Aminoglicosídeos/metabolismo
4.
Curr Genet ; 69(2-3): 153-163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37022498

RESUMO

Understanding where proteins are localized in a bacterial cell is essential for understanding their function and regulation. This is particularly important for proteins that are involved in cell division, which localize at the division septum and assemble into highly regulated complexes. Current knowledge of these complexes has been greatly facilitated by super-resolution imaging using fluorescent protein fusions. Herein, we demonstrate with FtsZ that single-molecule PALM images can be obtained in-vivo using a genetically fused nanotag (ALFA), and a corresponding nanobody fused to mEos3.2. The methodology presented is applicable to other bacterial proteins.


Assuntos
Proteínas de Escherichia coli , Anticorpos de Domínio Único , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Imagem Individual de Molécula , Proteínas do Citoesqueleto/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
5.
Microbiology (Reading) ; 166(12): 1129-1135, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33237852

RESUMO

Fluorescent d-amino acids (FDAAs) are molecular probes that are widely used for labelling the peptidoglycan layer of bacteria. When added to growing cells they are incorporated into the stem peptide by a transpeptidase reaction, allowing the timing and localization of peptidoglycan synthesis to be determined by fluorescence microscopy. Herein we describe the chemical synthesis of an OregonGreen488-labelled FDAA (OGDA). We also demonstrate that OGDA can be efficiently incorporated into the PG of Gram-positive and some Gram-negative bacteria, and imaged by super-resolution stimulated emission depletion (STED) nanoscopy at a resolution well below 100 nm.


Assuntos
Aminoácidos/metabolismo , Corantes Fluorescentes/metabolismo , Peptidoglicano/biossíntese , Aminoácidos/química , Corantes Fluorescentes/química , Bactérias Gram-Negativas/metabolismo , Microscopia de Fluorescência , Imagem Molecular
6.
Microb Cell Fact ; 19(1): 85, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264894

RESUMO

BACKGROUND: Recombinant proteins are often engineered with an N-terminal signal peptide, which facilitates their secretion to the oxidising environment of the periplasm (gram-negative bacteria) or the culture supernatant (gram-positive bacteria). A commonly encountered problem is that the signal peptide influences the synthesis and secretion of the recombinant protein in an unpredictable manner. A molecular understanding of this phenomenon is highly sought after, as it could lead to improved methods for producing recombinant proteins in bacterial cell factories. RESULTS: Herein we demonstrate that signal peptides contribute to an unpredictable translation initiation region. A directed evolution approach that selects a new translation initiation region, whilst leaving the amino acid sequence of the signal peptide unchanged, can increase production levels of secreted recombinant proteins. The approach can increase production of single chain antibody fragments, hormones and other recombinant proteins in the periplasm of E. coli. CONCLUSIONS: The study demonstrates that signal peptide performance is coupled to the efficiency of the translation initiation region.


Assuntos
Escherichia coli/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/metabolismo
7.
Mol Microbiol ; 107(3): 387-401, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193432

RESUMO

The division of Escherichia coli is mediated by a collection of some 34 different proteins that are recruited to the division septum and are thought to assemble into a macromolecular complex known as 'the divisome'. Herein, we have endeavored to better understand the structure of the divisome by imaging two of its core components; FtsZ and FtsN. Super resolution microscopy (SIM and gSTED) indicated that both proteins are localized in large assemblies, which are distributed around the division septum (i.e., forming a discontinuous ring). Although the rings had similar radii prior to constriction, the individual densities were often spatially separated circumferentially. As the cell envelope constricted, the discontinuous ring formed by FtsZ moved inside the discontinuous ring formed by FtsN. The radial and circumferential separation observed in our images indicates that the majority of FtsZ and FtsN molecules are organized in different macromolecular assemblies, rather than in a large super-complex. This conclusion was supported by fluorescence recovery after photobleaching measurements, which indicated that the dynamic behavior of the two macromolecular assemblies was also fundamentally different. Taken together, the data indicates that constriction of the cell envelope is brought about by (at least) two spatially separated complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular/genética , Escherichia coli/metabolismo , Escherichia coli/fisiologia
8.
Curr Genet ; 65(1): 99-101, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30056491

RESUMO

Bacterial cells need to divide. This process requires more than 30 different proteins, which gather at the division site. It is widely assumed that these proteins assemble into a macromolecular complex (the divisome), but capturing the molecular layout of this complex has proven elusive. Super-resolution microscopy can provide spatial information, down to a few tens of nanometers, about how the division proteins assemble into complexes and how their activities are co-ordinated. Herein we provide insight into recent work from our laboratories, where we used super-resolution gSTED nanoscopy to explore the molecular organization of FtsZ, FtsI and FtsN. The resulting images show that all three proteins form discrete densities organised in patchy pseudo-rings at the division site. Significantly, two-colour imaging highlighted a radial separation between FtsZ and FtsN, indicating that there is more than one type of macromolecular complex operating during division. These data provide a first glimpse into the spatial organisation of PG-synthesising enzymes during division in Gram-negative bacteria.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Peptidoglicano/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Complexos Multiproteicos/genética , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/metabolismo
9.
Microb Cell Fact ; 17(1): 37, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29519251

RESUMO

BACKGROUND: The market for recombinant proteins is on the rise, and Gram-positive strains are widely exploited for this purpose. Bacillus subtilis is a profitable host for protein production thanks to its ability to secrete large amounts of proteins, and Lactococcus lactis is an attractive production organism with a long history in food fermentation. RESULTS: We have developed a synbio approach for increasing gene expression in two Gram-positive bacteria. First of all, the gene of interest was coupled to an antibiotic resistance gene to create a growth-based selection system. We then randomised the translation initiation region (TIR) preceding the gene of interest and selected clones that produced high protein titres, as judged by their ability to survive on high concentrations of antibiotic. Using this approach, we were able to significantly increase production of two industrially relevant proteins; sialidase in B. subtilis and tyrosine ammonia lyase in L. lactis. CONCLUSION: Gram-positive bacteria are widely used to produce industrial enzymes. High titres are necessary to make the production economically feasible. The synbio approach presented here is a simple and inexpensive way to increase protein titres, which can be carried out in any laboratory within a few days. It could also be implemented as a tool for applications beyond TIR libraries, such as screening of synthetic, homologous or domain-shuffled genes.


Assuntos
Bacillus subtilis/genética , Microbiologia Industrial , Lactococcus lactis/genética , Proteínas Recombinantes/biossíntese , Amônia-Liases/biossíntese , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Neuraminidase/biossíntese , Iniciação Traducional da Cadeia Peptídica , Proteínas Recombinantes/genética
10.
Mol Microbiol ; 101(3): 425-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27096604

RESUMO

The divisome is the macromolecular complex that carries out cell division in Escherichia coli. Every generation it must be assembled, and then disassembled so that the sequestered proteins can be recycled. Whilst the assembly process has been well studied, virtually nothing is known about the disassembly process. In this study, we have used super-resolution SIM imaging to monitor pairs of fluorescently tagged divisome proteins as they depart from the division septum. These simple binary comparisons indicated that disassembly occurs in a coordinated process that consists of at least five steps: [FtsZ, ZapA] ⇒ [ZipA, FtsA] ⇒ [FtsL, FtsQ] ⇒ [FtsI, FtsN] ⇒ [FtsN]. This sequence of events is remarkably similar to the assembly process, indicating that disassembly follows a first-in, first-out principle. A secondary observation from these binary comparisons was that FtsZ and FtsN formed division rings that were spatially separated throughout the division process. Thus the data indicate that the divisome structure can be visualized as two concentric rings; a proto-ring containing FtsZ and an FtsN-ring.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/metabolismo , Mutação
11.
Curr Genet ; 63(2): 161-164, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27387519

RESUMO

Bacterial cells are critically dependent on their ability to divide. The process of division is carried out by a large and highly dynamic molecular machine, known as the divisome. An understanding of the divisomes' architecture is highly sought after, as it is essential for understanding molecular mechanisms and potentially designing antibiotic molecules that curb bacterial growth. Our current view, which is mainly based on high-resolution imaging of Escherichia coli, is that it is a patchy ring or toroid structure. However, recent super-resolution imaging has shown that the toroid structure contains at least three concentric rings, each containing a different set of proteins. Thus, the emerging picture is that the divisome has different functional modules that are spatially separated in concentric rings.


Assuntos
Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência/métodos , Complexos Multiproteicos/metabolismo , Imagem com Lapso de Tempo/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Complexos Multiproteicos/genética , Proteína Vermelha Fluorescente
12.
Mol Cell Proteomics ; 14(1): 216-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403562

RESUMO

How proteins are trafficked, folded, and assembled into functional units in the cell envelope of Gram-negative bacteria is of significant interest. A number of chaperones have been identified, however, the molecular roles of these chaperones are often enigmatic because it has been challenging to assign substrates. Recently we discovered a novel periplasmic chaperone, called YfgM, which associates with PpiD and the SecYEG translocon and operates in a network that contains Skp and SurA. The aim of the study presented here was to identify putative substrates of YfgM. We reasoned that substrates would be incorrectly folded or trafficked when YfgM was absent from the cell, and thus more prone to proteolysis (the loss-of-function rationale). We therefore used a comparative proteomic approach to identify cell envelope proteins that were lower in abundance in a strain lacking yfgM, and strains lacking yfgM together with either skp or surA. Sixteen putative substrates were identified. The list contained nine inner membrane proteins (CusS, EvgS, MalF, OsmC, TdcB, TdcC, WrbA, YfhB, and YtfH) and seven periplasmic proteins (HdeA, HdeB, AnsB, Ggt, MalE, YcgK, and YnjE), but it did not include any lipoproteins or outer membrane proteins. Significantly, AnsB (an asparaginase) and HdeB (a protein involved in the acid stress response), were lower in abundance in all three strains lacking yfgM. For both genes, we ruled out the possibility that they were transcriptionally down-regulated, so it is highly likely that the corresponding proteins are misfolded/mistargeted and turned-over in the absence of YfgM. For HdeB we validated this conclusion in a pulse-chase experiment. The identification of HdeB and other cell envelope proteins as potential substrates will be a valuable resource for follow-up experiments that aim to delineate molecular the function of YfgM.


Assuntos
Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Proteômica
13.
Biochim Biophys Acta ; 1854(10 Pt A): 1365-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26066610

RESUMO

Human microsomal glutathione transferase 2 (MGST2) is a trimeric integral membrane protein that belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family. The mammalian MAPEG family consists of six members where four have been structurally determined. MGST2 activates glutathione to form a thiolate that is crucial for GSH peroxidase activity and GSH conjugation reactions with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB). Several studies have shown that MGST2 is able to catalyze a GSH conjugation reaction with the epoxide LTA4 forming the pro-inflammatory LTC4. Unlike its closest homologue leukotriene C4 synthase (LTC4S), MGST2 appears to activate its substrate GSH using only one of the three potential active sites [Ahmad S, et al. (2013) Biochemistry. 52, 1755-1764]. In order to demonstrate and detail the mechanism of one-third of the sites reactivity of MGST2, we have determined the enzyme oligomeric state, by Blue native PAGE and Differential Scanning Calorimetry, as well as the stoichiometry of substrate and substrate analog inhibitor binding to MGST2, using equilibrium dialysis and Isothermal Titration Calorimetry, respectively. Global simulations were used to fit kinetic data to determine the catalytic mechanism of MGST2 with GSH and CDNB (1-chloro-2,4-dinitrobenzene) as substrates. The best fit was observed with 1/3 of the sites catalysis as compared with a simulation where all three sites were active. In contrast to LTC4S, MGST2 displays a 1/3 the sites reactivity, a mechanism shared with the more distant family member MGST1 and recently suggested also for microsomal prostaglandin E synthase-1.


Assuntos
Dinitroclorobenzeno/química , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Glutationa/química , Sequência de Aminoácidos , Calorimetria , Domínio Catalítico , Dinitroclorobenzeno/metabolismo , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Glutationa/metabolismo , Glutationa Transferase/genética , Humanos , Cinética , Microssomos/enzimologia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Pichia/genética , Pichia/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Biochemistry ; 54(23): 3670-6, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25993101

RESUMO

The Cpx stress response system is induced by various environmental and cellular stimuli. It is also activated in Escherichia coli strains lacking the major phospholipid, phosphatidylethanolamine (PE). However, it is not known whether CpxA directly senses changes in the lipid bilayer or the presence of misfolded proteins due to the lack of PE in their membranes. To address this question, we used an in vitro reconstitution system and vesicles with different lipid compositions to track modulations in the activity of CpxA in different lipid bilayers. Moreover, the Cpx response was validated in vivo by monitoring expression of a PcpxP-gfp reporter in lipid-engineered strains of E. coli. Our combined data indicate that CpxA responds specifically to different lipid compositions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/química , Modelos Moleculares , Fosfatidiletanolaminas/química , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Acholeplasma laidlawii/enzimologia , Acholeplasma laidlawii/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Propriedades de Superfície
15.
J Biol Chem ; 289(27): 19089-97, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24855643

RESUMO

Protein secretion in Gram-negative bacteria is essential for both cell viability and pathogenesis. The vast majority of secreted proteins exit the cytoplasm through a transmembrane conduit called the Sec translocon in a process that is facilitated by ancillary modules, such as SecA, SecDF-YajC, YidC, and PpiD. In this study we have characterized YfgM, a protein with no annotated function. We found it to be a novel ancillary subunit of the Sec translocon as it co-purifies with both PpiD and the SecYEG translocon after immunoprecipitation and blue native/SDS-PAGE. Phenotypic analyses of strains lacking yfgM suggest that its physiological role in the cell overlaps with the periplasmic chaperones SurA and Skp. We, therefore, propose a role for YfgM in mediating the trafficking of proteins from the Sec translocon to the periplasmic chaperone network that contains SurA, Skp, DegP, PpiD, and FkpA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Escherichia coli/citologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Chaperonas Moleculares/genética , Estresse Oxidativo , Periplasma/metabolismo , Transporte Proteico , Canais de Translocação SEC
16.
Biochim Biophys Acta ; 1838(7): 1862-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726609

RESUMO

The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellular membranes when overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE) was detected to be the most affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition.


Assuntos
Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Glucosiltransferases/metabolismo , Acholeplasma laidlawii/enzimologia , Acholeplasma laidlawii/genética , Acholeplasma laidlawii/metabolismo , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Estrutura Secundária de Proteína
17.
Mol Microbiol ; 92(1): 1-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24506818

RESUMO

In most bacteria cell division is mediated by a protein super-complex called the divisome that co-ordinates the constriction and scission of the cell envelope. FtsZ is the first of the divisome proteins to accumulate at the division site and is widely thought to function as a force generator that constricts the cell envelope. In this study we have used a combination of confocal fluorescence microscopy and fluorescence recovery after photobleaching (FRAP) to determine if divisome proteins are present at the septum at the time of cytoplasmic compartmentalization in Escherichia coli. Our data suggest that many are, but that FtsZ and ZapA disassemble before the cytoplasm is sealed by constriction of the inner membrane. This observation implies that FtsZ cannot be a force generator during the final stage(s) of envelope constriction in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Citoplasma/fisiologia , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Divisão Celular/fisiologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Microscopia Confocal , Proteínas Recombinantes de Fusão/metabolismo
18.
ACS Synth Biol ; 13(5): 1477-1491, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676700

RESUMO

Escherichia coli is often used as a factory to produce recombinant proteins. In many cases, the recombinant protein needs disulfide bonds to fold and function correctly. These proteins are genetically fused to a signal peptide so that they are secreted to the oxidizing environment of the periplasm (where the enzymes required for disulfide bond formation exist). Currently, it is difficult to determine in vivo whether a recombinant protein is efficiently secreted from the cytoplasm and folded in the periplasm or if there is a bottleneck in one of these steps because cellular capacity has been exceeded. To address this problem, we have developed a biosensor that detects cellular stress caused by (1) inefficient secretion of proteins from the cytoplasm and (2) aggregation of proteins in the periplasm. We demonstrate how the fluorescence fingerprint obtained from the biosensor can be used to identify induction conditions that do not exceed the capacity of the cell and therefore do not cause cellular stress. These induction conditions result in more effective biomass and in some cases higher titers of soluble recombinant proteins.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Proteínas Periplásmicas , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Periplasma/metabolismo , Estresse Fisiológico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
19.
Biochemistry ; 52(28): 4842-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23781956

RESUMO

Members of the CorA/Mrs2/Alr1 superfamily of transport proteins mediate magnesium uptake in all kingdoms of life. Family members have a low degree of sequence conservation but are characterized by a conserved extracellular loop. While the degree of sequence conservation in the loop deviates to some extent between family members, the GMN family signature motif is always present. Structural and functional data imply that the loop plays a central role in magnesium selectivity, and recent biochemical data suggest it is crucial for stabilizing the pentamer in the magnesium-free (putative open) conformation. In this study, we present a detailed structure-function analysis of the extracellular loop of CorA from Thermotoga maritima, which provides molecular insight into how the loop mediates these two functions. The data show that loop residues outside of the GMN motif can be substituted if they support the pentameric state, but the residues of the GMN motif are intolerant to substitution. We conclude that G(312) is absolutely required for magnesium uptake, M(313) is absolutely required for pentamer integrity in the putative open conformation, and N(314) plays a role in both of these functions. These observations suggest a molecular reason why the GMN motif is conserved throughout the CorA/Mrs2/Alr1 superfamily.


Assuntos
Motivos de Aminoácidos , Proteínas de Transporte de Cátions/química , Sequência Conservada , Magnésio/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
20.
J Biol Chem ; 287(33): 27547-55, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22722933

RESUMO

Crystal structures of the CorA Mg(2+) channel have suggested that metal binding in the cytoplasmic domain stabilizes the pentamer in a closed conformation. The open "metal free" state of the channel is, however, still structurally uncharacterized. Here, we have attempted to map conformational states of CorA from Thermotoga maritima by determining which residues support the pentameric structure in the presence or absence of Mg(2+). We find that when Mg(2+) is present, the pentamer is stabilized by the putative gating sites (M1/M2) in the cytoplasmic domain. Strikingly however, we find that the conserved and functionally important periplasmic loop is vital for the integrity of the pentamer when Mg(2+) is absent from the M1/M2 sites. Thus, although the periplasmic loops were largely disordered in the x-ray structures of the closed channel, our data suggests a prominent role for the loops in stabilizing the open conformation of the CorA channels.


Assuntos
Proteínas de Transporte de Cátions/química , Magnésio/química , Thermotoga maritima/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Transporte de Íons/fisiologia , Magnésio/metabolismo , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Thermotoga maritima/genética , Thermotoga maritima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA