Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Emerg Infect Dis ; 30(2): 391-394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270179

RESUMO

We report an outbreak of COVID-19 in a beaver farm in Mongolia in 2021. Genomic characterization revealed a unique combination of mutations in the SARS-CoV-2 of the infected beavers. Based on these findings, increased surveillance of farmed beavers should be encouraged.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Mongólia/epidemiologia , SARS-CoV-2/genética , Fazendas , Surtos de Doenças
2.
PLoS Pathog ; 15(2): e1007531, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30731004

RESUMO

Virus ecology and evolution play a central role in disease emergence. However, their relative roles will vary depending on the viruses and ecosystems involved. We combined field studies, phylogenetics and experimental infections to document with unprecedented detail the stages that precede initial outbreaks during viral emergence in nature. Using serological surveys we showed that in the absence of large-scale outbreaks, horses in Mongolia are routinely exposed to and infected by avian influenza viruses (AIVs) circulating among wild birds. Some of those AIVs are genetically related to an avian-origin virus that caused an epizootic in horses in 1989. Experimental infections showed that most AIVs replicate in the equine respiratory tract without causing lesions, explaining the absence of outbreaks of disease. Our results show that AIVs infect horses but do not spread, or they infect and spread but do not cause disease. Thus, the failure of AIVs to evolve greater transmissibility and to cause disease in horses is in this case the main barrier preventing disease emergence.


Assuntos
Cavalos/imunologia , Influenza Aviária/genética , Animais , Animais Selvagens , Ásia , Evolução Biológica , Aves , Surtos de Doenças , Transmissão de Doença Infecciosa/veterinária , Evolução Molecular , Cavalos/genética , Humanos , Influenza Aviária/imunologia , Influenza Humana , Infecções por Orthomyxoviridae/veterinária , Filogenia
3.
Emerg Infect Dis ; 26(1): 51-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855146

RESUMO

The 2016-2017 introduction of peste des petits ruminants virus (PPRV) into livestock in Mongolia was followed by mass mortality of the critically endangered Mongolian saiga antelope and other rare wild ungulates. To assess the nature and population effects of this outbreak among wild ungulates, we collected clinical, histopathologic, epidemiologic, and ecological evidence. Molecular characterization confirmed that the causative agent was PPRV lineage IV. The spatiotemporal patterns of cases among wildlife were similar to those among livestock affected by the PPRV outbreak, suggesting spillover of virus from livestock at multiple locations and time points and subsequent spread among wild ungulates. Estimates of saiga abundance suggested a population decline of 80%, raising substantial concerns for the species' survival. Consideration of the entire ungulate community (wild and domestic) is essential for elucidating the epidemiology of PPRV in Mongolia, addressing the threats to wild ungulate conservation, and achieving global PPRV eradication.


Assuntos
Animais Selvagens/virologia , Antílopes/virologia , Surtos de Doenças/veterinária , Espécies em Perigo de Extinção , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes , Animais , Espécies em Perigo de Extinção/estatística & dados numéricos , Feminino , Genoma Viral/genética , Masculino , Mongólia/epidemiologia , Peste dos Pequenos Ruminantes/patologia , Vírus da Peste dos Pequenos Ruminantes/genética , Filogenia
4.
Arch Virol ; 162(10): 3157-3160, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667443

RESUMO

Between August and September 2016 pathological samples were collected from sheep and goats following suspected peste des petits ruminants (PPR) outbreaks in western Mongolia. RT-PCR followed by sequencing and phylogenetic analysis of the samples confirmed the presence of a PPR virus belonging to lineage IV. A full genome analysis of the viral RNA from one of the samples revealed a high similarity (99.0-99.5%) with PPR viruses currently circulating in China (2013-2015) indicating a common origin. This is the first genetic characterization of PPR virus in Mongolia and the data generated will have important implications for control and management of the disease in the region.


Assuntos
Genoma Viral , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Animais , Mongólia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Filogenia
5.
Virus Genes ; 53(3): 418-425, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28260187

RESUMO

Classical swine fever (CSF), a highly contagious viral disease affecting domestic and wild pigs in many developing countries, is now considered endemic in Mongolia, with 14 recent outbreaks in 2007, 2008, 2011, 2012, 2014, and 2015. For the first time, CSF viruses isolated from these 14 outbreaks were analyzed to assess their molecular epidemiology and pathogenicity in pigs. Based on the nucleotide sequences of their 5'-untranslated region, isolates were phylogenetically classified as either sub-genotypes 2.1b or 2.2, and the 2014 and 2015 isolates, which were classified as 2.1b, were closely related to isolates from China and Korea. In addition, at least three different viruses classified as 2.1b circulated in Mongolia. Experimental infection of the representative isolate in 2014 demonstrated moderate pathogenicity in 4-week-old pigs, with relatively mild clinical signs. Understanding the diversity of circulating CSF viruses gleans insight into disease dynamics and evolution, and may inform the design of effective CSF control strategies in Mongolia.


Assuntos
Vírus da Febre Suína Clássica/classificação , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/isolamento & purificação , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/virologia , Epidemiologia Molecular , Doenças dos Suínos/virologia , Virulência/genética , Animais , Sequência de Bases , Linhagem Celular , China , Peste Suína Clássica/patologia , Peste Suína Clássica/fisiopatologia , Modelos Animais de Doenças , Surtos de Doenças , Genótipo , Mongólia/epidemiologia , Filogenia , República da Coreia , Sus scrofa/virologia , Suínos
6.
Virus Genes ; 51(1): 57-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036326

RESUMO

Migratory water birds are the natural reservoir of influenza A viruses. H5 and H7 influenza viruses are isolated over the world and also circulate among poultry in Asia. In 2010, two H5N1 highly pathogenic avian influenza viruses (HPAIVs) were isolated from fecal samples of water birds on the flyway of migration from Siberia, Russia to the south in Hokkaido, Japan. H7N9 viruses are sporadically isolated from humans and circulate in poultry in China. To monitor whether these viruses have spread in the wild bird population, we conducted virological surveillance of avian influenza in migratory water birds in autumn from 2010 to 2014. A total of 8103 fecal samples from migratory water birds were collected in Japan and Mongolia, and 350 influenza viruses including 13 H5 and 19 H7 influenza viruses were isolated. A phylogenetic analysis revealed that all isolates are genetically closely related to viruses circulating among wild water birds. The results of the antigenic analysis indicated that the antigenicity of viruses in wild water birds is highly stable despite their nucleotide sequence diversity but is distinct from that of HPAIVs recently isolated in Asia. The present results suggest that HPAIVs and Chinese H7N9 viruses were not predominantly circulating in migratory water birds; however, continued monitoring of H5 and H7 influenza viruses both in domestic and wild birds is recommended for the control of avian influenza.


Assuntos
Antígenos Virais/análise , Antígenos Virais/genética , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Aves , Análise por Conglomerados , Fezes/virologia , Variação Genética , Japão , Dados de Sequência Molecular , Mongólia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
7.
Viruses ; 16(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675899

RESUMO

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Assuntos
Genoma Viral , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Filogenia , Sequenciamento Completo do Genoma , Vírus da Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/classificação , Vírus da Doença Nodular Cutânea/isolamento & purificação , Animais , Doença Nodular Cutânea/virologia , Doença Nodular Cutânea/epidemiologia , Bovinos , África Central/epidemiologia , África Ocidental/epidemiologia , Surtos de Doenças
8.
Vet Med Sci ; 9(6): 2676-2685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37771165

RESUMO

BACKGROUND: Since 2005, highly pathogenic avian influenza A H5N1 viruses have spread from Asia worldwide, infecting poultry, humans and wild birds. Subsequently, global interest in avian influenza (AI) surveillance increased. OBJECTIVES: Mongolia presents an opportunity to study viruses in wild birds because the country has very low densities of domestic poultry and supports large concentrations of migratory water birds. METHODS: We conducted AI surveillance in Mongolia over two time periods, 2009-2013 and 2016-2018, utilizing environmental fecal sampling. Fresh fecal samples were collected from water bird congregation sites. Hemagglutinin (HA) and neuraminidase (NA) subtypes of positive samples were identified through viral isolation or molecular assays, with pathogenicity determined by HA subtype or sequencing the HA cleavage site. RESULTS: A total of 10,222 samples were collected. Of these, 7,025 fecal samples were collected from 2009 to 2013, and 3,197 fecal samples were collected from 2016 to 2018. Testing revealed 175 (1.7%) positive samples for low-pathogenicity influenza A, including 118 samples from 2009 to 2013 (1.7%) and 57 samples from 2016 to 2018 (1.8%). HA and NA subtyping of all positives identified 11 subtypes of HA and nine subtypes of NA in 29 different combinations. Within periods, viruses were detected more frequently during the fall season than in the early summer. CONCLUSION: Mongolia's critical wild bird habitat is positioned as a crossroad of multiple migratory flyways. Our work demonstrates the feasibility of using an affordable environmental fecal sampling approach for AI surveillance and contributes to understanding the prevalence and ecology of low-pathogenicity avian influenza viruses in this important location, where birds from multiple flyways mix.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Influenza Aviária/epidemiologia , Mongólia/epidemiologia , Virulência , Animais Selvagens , Aves , Água
9.
Transbound Emerg Dis ; 69(4): 1837-1846, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34033248

RESUMO

Sheeppox is a transboundary disease of small ruminants caused by infection with the capripoxvirus sheeppox virus. Sheeppox is found in Africa, the Middle East and Asia and is characterized by fever, multifocal cutaneous raised lesions and death. Vaccination with live attenuated capripoxvirus (CPPV) strains is an effective and widely used strategy to contol sheeppox outbreaks; however, there are few reports of post-vaccination field surveillance studies. This study used a commercially available enzyme-linked immunosorbent assay (ELISA) to examine quantitative and temporal features of the humoral response of sheep vaccinated with a live-attenuated CPPV strain in Mongolia. Four hundred samples were tested using the ELISA commercial kit, and a subset of 45 samples were also tested with a virus neutralization test (VNT). There was substantial agreement between the VNT and ELISA tests. Antibodies to CPPV were detected between 40 and 262 days post-vaccination. There was no significant difference between serological status (positive/negative) and sex or age; however, an inverse correlation was found between the length of time since vaccination and serological status. Animals between 90 and 180 days post-vaccination were more likely to be positive than animals greater than 180 days post-vaccination. Our results show that a commercial CPPV ELISA kit is a robust and reliable assay for post-CPPV vaccination surveillance in resource-restricted settings and provide temporal parameters to be considered when planning sheeppox post-vaccination monitoring programmes.


Assuntos
Capripoxvirus , Infecções por Poxviridae , Doenças dos Ovinos , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Imunidade Humoral , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/veterinária , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/epidemiologia
10.
Virus Evol ; 7(2): veab062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754511

RESUMO

Peste des petits ruminants virus (PPRV) causes disease in domestic and wild ungulates, is the target of a Global Eradication Programme, and threatens biodiversity. Understanding the epidemiology and evolution of PPRV in wildlife is important but hampered by the paucity of wildlife-origin PPRV genomes. In this study, full PPRV genomes were generated from three Mongolian saiga antelope, one Siberian ibex, and one goitered gazelle from the 2016-2017 PPRV outbreak. Phylogenetic analysis showed that for Mongolian and Chinese PPRV since 2013, the wildlife and livestock-origin genomes were closely related and interspersed. There was strong phylogenetic support for a monophyletic group of PPRV from Mongolian wildlife and livestock, belonging to a clade of lineage IV PPRV from livestock and wildlife from China since 2013. Discrete diffusion analysis found strong support for PPRV spread into Mongolia from China, and phylogeographic analysis indicated Xinjiang Province as the most likely origin, although genomic surveillance for PPRV is poor and lack of sampling from other regions could bias this result. Times of most recent common ancestor (TMRCA) were June 2015 (95 per cent highest posterior density (HPD): August 2014 to March 2016) for all Mongolian PPRV genomes and May 2016 (95 per cent HPD: October 2015 to October 2016) for Mongolian wildlife-origin PPRV. This suggests that PPRV was circulating undetected in Mongolia for at least 6 months before the first reported outbreak in August 2016 and that wildlife were likely infected before livestock vaccination began in October 2016. Finally, genetic variation and positively selected sites were identified that might be related to PPRV emergence in Mongolian wildlife. This study is the first to sequence multiple PPRV genomes from a wildlife outbreak, across several host species. Additional full PPRV genomes and associated metadata from the livestock-wildlife interface are needed to enhance the power of molecular epidemiology, support PPRV eradication, and safeguard the health of the whole ungulate community.

12.
J Wildl Dis ; 54(2): 342-346, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286260

RESUMO

Avian paramyxoviruses (APMVs) constitute some of the most globally prevalent avian viruses and are frequently isolated from wild migratory bird species. Using 1,907 fresh fecal samples collected during the 2012 avian influenza surveillance program, we identified two serotypes of APMV: APMV-4 ( n=10) and APMV-8 ( n=1). Sequences for these isolates phylogenetically clustered with Asian APMV-4 and APMV-8 recently isolated from wild birds in Korea, Japan, China, and Kazakhstan. Analysis by DNA barcoding indicated that the Mongolian APMV-4 and APMV-8 strains were isolated from Anseriformes species including Mallards ( Anas platyrhynchos) and Whooper Swans ( Cygnus cygnus). The close genetic relatedness to Asian isolates, and to similar host species, suggested that wild bird species in the Anatidae family might play an important role as a natural reservoir in the spread of APMV-4 and APMV-8. However, we did not find conclusive evidence to support this hypothesis owing to the limited number of strains that could be isolated. Enhanced surveillance of poultry and wild bird populations in Asia is therefore crucial for the understanding of global AMPV transmission, ecology, evolution, and epidemiology.


Assuntos
Animais Selvagens , Anseriformes/virologia , Infecções por Avulavirus/veterinária , Avulavirus/genética , Animais , Avulavirus/classificação , Infecções por Avulavirus/epidemiologia , Infecções por Avulavirus/virologia , Mongólia/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA