Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biometals ; 27(6): 1323-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298233

RESUMO

Μetal cofactors are required for enzymatic catalysis and structural stability of many proteins. Physiological metal requirements underpin the evolution of cellular and systemic regulatory mechanisms for metal uptake, storage and excretion. Considering the role of metal biology in animal evolution, this paper asks whether metal content is conserved between different fruit flies. A similar metal homeostasis was previously observed in Drosophilidae flies cultivated on the same larval medium. Each species accumulated in the order of 200 µg iron and zinc and approximately ten-fold less manganese and copper per gram dry weight of the adult insect. In this paper, data on the metal content in fourteen species of Tephritidae, which are major agricultural pests worldwide, are presented. These fruit flies can be polyphagous (e.g., Ceratitis capitata) or strictly monophagous (e.g., Bactrocera oleae) or oligophagous (e.g., Anastrepha grandis) and were maintained in the laboratory on five distinct diets based on olive oil, carrot, wheat bran, zucchini and molasses, respectively. The data indicate that overall metal content and distribution between the Tephritidae and Drosophilidae species was similar. Reduced metal concentration was observed in B. oleae. Feeding the polyphagous C. capitata with the diet of B. oleae resulted in a significant quantitative reduction of all metals. Thus, dietary components affect metal content in some Tephritidae. Nevertheless, although the evidence suggests some fruit fly species evolved preferences in the use or storage of particular metals, no metal concentration varied in order of magnitude between these two families of Diptera that evolved independently for over 100 million years.


Assuntos
Evolução Biológica , Dípteros/classificação , Drosophilidae/química , Metais/análise , Tephritidae/química , Animais , Ceratitis capitata/química , Ceratitis capitata/crescimento & desenvolvimento , Quelantes , Dieta , Dípteros/metabolismo , Drosophila/química , Drosophila/crescimento & desenvolvimento , Drosophilidae/crescimento & desenvolvimento , Homeostase , Larva , Metais/farmacocinética , Melaço , Azeite de Oliva , Óleos de Plantas , Especificidade da Espécie , Espectrofotometria Atômica , Tephritidae/crescimento & desenvolvimento , Verduras
2.
PLoS One ; 13(11): e0206739, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383856

RESUMO

The olive fruit fly, Bactrocera oleae (Rossi), is the most important insect pest for the cultivation of olives worldwide. Considerable research efforts have been invested in the past decades to develop eradication or suppression tactics for use within an area-wide integrated pest management (AW-IPM) approach that includes a sterile insect technique (SIT) component. One of the major obstacles encountered in the development of SIT for olive fruit fly was the inferior quality of the mass-reared flies, expressed among others evident primarily by sterile males having a different timing of peak mating and a lower mating propensity in comparison with their wild counterparts. In this study we assessed the mating behaviour and mating compatibility of olive fruit flies originating from four countries of the Mediterranean region (Croatia, France, Italy, Spain) in walk-in field cages and post zygotic compatibility (expressed as % egg hatch) under laboratory conditions. Furthermore, we tested the hypothesis whether a hybrid strain (Greece (domesticated)/Israel (wild)) adapted to laboratory rearing conditions showed any mating barriers with all the four "wild" populations. Finally, we examined the effect of colonization on the mating compatibility of the four newly established populations over three consecutive generations. The results showed no pre-zygotic (mating barriers) or post-zygotic isolations (measured by egg hatch%) among the olive fruit fly populations from the four countries tested. Also, there was no evidence of mating barriers between the hybrid strain and the wild populations of the Mediterranean region.


Assuntos
Comportamento Sexual Animal , Tephritidae , Distribuição Animal , Animais , Biodiversidade , Produção Agrícola , Manobra Psicológica , Abrigo para Animais , Infertilidade , Região do Mediterrâneo , Olea , Controle Biológico de Vetores , Reprodução , Especificidade da Espécie
3.
PLoS One ; 11(6): e0157679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336737

RESUMO

The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C). The use of this GSS permits production and the release of only males which has increased the cost effectiveness of the SIT several fold for this pest. An efficient method of identification of recaptured sterile males can further increase the cost effectiveness of the SIT for this pest. Therefore, VIENNA 8-Sergeant2 (Sr2) strain and the transgenic strain VIENNA 8-1260 having visible markers were constructed. All three strains were evaluated for egg production, egg hatch, and egg sterility parameters under semi mass-rearing conditions and mating competitiveness in field cages. VIENNA 8-1260 females produced significantly fewer eggs as compared with the two other strains, which produced similar numbers of eggs. However, egg hatch of all strains was similar. Egg hatch of eggs produced by untreated females that had mated with adult males that had been irradiated with 100 Gy as pupae 2 days before emergence, was different for the three strains, i.e., egg hatch of 0.63%, 0.77%, 0.89% for VIENNA 8, VIENNA 8-1260, and VIENNA 8-Sr2, respectively. Differences in male mating competitiveness of the three strains against wild-type males were gradually reduced with successive generations under semi mass-rearing conditions. However, VIENNA 8 males adapted faster to laboratory conditions as compared with VIENNA 8-Sr2 and VIENNA 8-1260 males with respect to mating competitiveness. VIENNA 8 males of the F10 generation were equally competitive with wild-type males, whereas the mating competitiveness of VIENNA 8-Sr2 and VIENNA 8-1260 males was similar but lower as compared with wild-type males. Males from all three strains copulated earlier than wild-type males. Results are discussed in relation with the potential benefits of incorporating novel strains for more effective SIT application.


Assuntos
Ceratitis capitata/fisiologia , Comportamento Sexual Animal , Animais , Ceratitis capitata/genética , Comportamento Competitivo , Cruzamentos Genéticos , Feminino , Fertilidade/efeitos da radiação , Masculino , Óvulo , Controle Biológico de Vetores , Reprodução , Análise para Determinação do Sexo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA