Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Brain Mapp ; 44(11): 4225-4238, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232486

RESUMO

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and phonic tics, which several different theories, such as basal ganglia-thalamo-cortical loop dysfunction and amygdala hypersensitivity, have sought to explain. Previous research has shown dynamic changes in the brain prior to tic onset leading to tics, and this study aims to investigate the contribution of network dynamics to them. For this, we have employed three methods of functional connectivity to resting-state fMRI data - namely the static, the sliding window dynamic and the ICA based estimated dynamic; followed by an examination of the static and dynamic network topological properties. A leave-one-out (LOO-) validated regression model with LASSO regularization was used to identify the key predictors. The relevant predictors pointed to dysfunction of the primary motor cortex, the prefrontal-basal ganglia loop and amygdala-mediated visual social processing network. This is in line with a recently proposed social decision-making dysfunction hypothesis, opening new horizons in understanding tic pathophysiology.


Assuntos
Tiques , Síndrome de Tourette , Humanos , Tiques/diagnóstico por imagem , Síndrome de Tourette/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Gânglios da Base
2.
Hum Brain Mapp ; 42(13): 4122-4133, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-30367727

RESUMO

Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs-functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low-frequency fluctuations (fALFFs), as well as 2-[18F]fluoro-2-desoxy-d-glucose (FDG)-PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact-corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs-fMRI metrics and FDG-PET SUV measured in the DMN of the brain. The rs-fMRI metrics (ReHO, fALFF) and FDG-PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs  = 0.73, p = .01). FDG-PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.


Assuntos
Córtex Cerebral , Conectoma/métodos , Rede de Modo Padrão , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Biomarcadores , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Humanos
3.
Neuroimage ; 221: 117160, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679251

RESUMO

The use of hybrid PET/MR imaging facilitates the simultaneous investigation of challenge-related changes in ligand binding to neuroreceptors using PET, while concurrently measuring neuroactivation or blood flow with MRI. Having attained a steady state of the PET radiotracer using a bolus-infusion protocol, it is possible to observe alterations in ligand neuroreceptor binding through changes in distribution volumes. Here, we present an iterative procedure for establishing an administration scheme to obtain steady state [11C]flumazenil concentrations in grey matter in the human brain. In order to achieve a steady state in the shortest possible time, the bolus infusion ratio from a previous examination was adapted to fit the subsequent examination. 17 male volunteers were included in the study. Boli and infusions with different weightings were given to the subjects and were characterised by kbol values from 74 â€‹min down to 42 â€‹min. Metabolite analysis was used to ascertain the value of unmetabolised flumazenil in the plasma, and PET imaging was used to assess its binding in the grey matter. The flumazenil time-activity curves (TACs) in the brain were decomposed into activity contributions from pure grey and white matter and analysed for 12 â€‹vol of interest (VOIs). The curves highlighted a large variability in metabolic rates between the subjects, with kbol â€‹= â€‹54.3 â€‹min being a reliable value to provide flumazenil equilibrium conditions in the majority of the VOIs and cases. The distribution volume of flumazenil in all 12 VOIs was determined.


Assuntos
Radioisótopos de Carbono/administração & dosagem , Flumazenil , Moduladores GABAérgicos , Substância Cinzenta , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Células Receptoras Sensoriais , Substância Branca , Adulto , Flumazenil/administração & dosagem , Flumazenil/sangue , Flumazenil/farmacocinética , Moduladores GABAérgicos/administração & dosagem , Moduladores GABAérgicos/sangue , Moduladores GABAérgicos/farmacocinética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Humanos , Masculino , Imagem Multimodal , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo , Adulto Jovem
4.
Hum Brain Mapp ; 38(8): 3975-3987, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480987

RESUMO

Gamma-aminobutyric acid (GABA) and glutamate are believed to have inhibitory and exhibitory neuromodulatory effects that regulate the brain's response to sensory perception. Furthermore, frequency-specific synchronization of neuronal excitability within the gamma band (30-80 Hz) is attributable to a homeostatic balance between excitation and inhibition. However, our understanding of the physiological mechanism underlying gamma rhythms is based on animal models. Investigations of the relationship between GABA concentrations, glutamate concentrations, and gamma band activity in humans were mostly restricted to the visual cortex and are conflicting. Here, we performed a multimodal imaging study combining magnetic resonance spectroscopy (MRS) with electroencephalography (EEG) in the auditory cortex. In 14 healthy subjects, we investigated the impact of individual differences in GABA and glutamate concentration on gamma band response (GBR) following auditory stimulus presentation. We explored the effects of bulk GABA on the GBR across frequency (30-200 Hz) and time (-200 to 600 ms) and found no significant relationship. Furthermore, no correlations were found between gamma peak frequency or power measures and metabolite concentrations (GABA, glutamate, and GABA/glutamate ratio). These findings suggest that, according to MRS measurements, and given the auditory stimuli used in this study, GABA and glutamate concentrations are unlikely to play a significant role in the inhibitory and excitatory drive in the generation of gamma band activity in the auditory cortex. Hum Brain Mapp 38:3975-3987, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Ritmo Gama/fisiologia , Ácido gama-Aminobutírico/metabolismo , Estimulação Acústica , Adulto , Córtex Auditivo/diagnóstico por imagem , Eletroencefalografia , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
5.
Front Psychiatry ; 15: 1293514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832325

RESUMO

Recent resilience research has increasingly emphasized the importance of focusing on investigating the protective factors in mentally healthy populations, complementing the traditional focus on psychopathology. Social support has emerged as a crucial element within the complex interplay of individual and socio-environmental factors that shape resilience. However, the neural underpinnings of the relationship between social support and resilience, particularly in healthy subjects, remain largely unexplored. With advances in neuroimaging techniques, such as ultra-high field MRI at 7T and beyond, researchers can more effectively investigate the neural mechanisms underlying these factors. Thus, our study employed ultra-high field rs-fMRI to explore how social support moderates the relationship between psychological resilience and functional connectivity in a healthy cohort. We hypothesized that enhanced social support would amplify resilience-associated connectivity within neural circuits essential for emotional regulation, cognitive processing, and adaptive problem-solving, signifying a synergistic interaction where strong social networks bolster the neural underpinnings of resilience. (n = 30). Through seed-based functional connectivity analyses and interaction analysis, we aimed to uncover the neural correlates at the interplay of social support and resilience. Our findings indicate that perceived social support significantly (p<0.001) alters functional connectivity in the right and left FP, PCC, and left hippocampus, affirming the pivotal roles of these regions in the brain's resilience network. Moreover, we identified significant moderation effects of social support across various brain regions, each showing unique connectivity patterns. Specifically, the right FP demonstrated a significant interaction effect where high social support levels were linked to increased connectivity with regions involved in socio-cognitive processing, while low social support showed opposite effects. Similar patterns by social support levels were observed in the left FP, with connectivity changes in clusters associated with emotional regulation and cognitive functions. The PCC's connectivity was distinctly influenced by support levels, elucidating its role in emotional and social cognition. Interestingly, the connectivity of the left hippocampus was not significantly impacted by social support levels, indicating a unique pattern within this region. These insights highlight the importance of high social support levels in enhancing the neural foundations of resilience and fostering adaptive neurological responses to environmental challenges.

6.
J Nucl Med ; 65(1): 16-21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37884332

RESUMO

Contrast-enhanced MRI is the method of choice for brain tumor diagnostics, despite its low specificity for tumor tissue. This study compared the contribution of MR spectroscopic imaging (MRSI) and amino acid PET to improve the detection of tumor tissue. Methods: In 30 untreated patients with suspected glioma, O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET; 3-T MRSI with a short echo time; and fluid-attenuated inversion recovery, T2-weighted, and contrast-enhanced T1-weighted MRI were performed for stereotactic biopsy planning. Serial samples were taken along the needle trajectory, and their masks were projected to the preoperative imaging data. Each sample was individually evaluated neuropathologically. 18F-FET uptake and the MRSI signals choline (Cho), N-acetyl-aspartate (NAA), creatine, myoinositol, and derived ratios were evaluated for each sample and classified using logistic regression. The diagnostic accuracy was evaluated by receiver operating characteristic analysis. Results: On the basis of the neuropathologic evaluation of tissue from 88 stereotactic biopsies, supplemented with 18F-FET PET and MRSI metrics from 20 areas on the healthy-appearing contralateral hemisphere to balance the glioma/nonglioma groups, 18F-FET PET identified glioma with the highest accuracy (area under the receiver operating characteristic curve, 0.89; 95% CI, 0.81-0.93; threshold, 1.4 × background uptake). Among the MR spectroscopic metabolites, Cho/NAA normalized to normal brain tissue showed the highest diagnostic accuracy (area under the receiver operating characteristic curve, 0.81; 95% CI, 0.71-0.88; threshold, 2.2). The combination of 18F-FET PET and normalized Cho/NAA did not improve the diagnostic performance. Conclusion: MRI-based delineation of gliomas should preferably be supplemented by 18F-FET PET.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/metabolismo , Espectroscopia de Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Tomografia por Emissão de Pósitrons/métodos , Tirosina , Biópsia
7.
Front Neurosci ; 17: 1229371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799343

RESUMO

Neural fingerprinting is the identification of individuals in a cohort based on neuroimaging recordings of brain activity. In magneto- and electroencephalography (M/EEG), it is common practice to use second-order statistical measures, such as correlation or connectivity matrices, when neural fingerprinting is performed. These measures or features typically require coupling between signal channels and often ignore the individual temporal dynamics. In this study, we show that, following recent advances in multivariate time series classification, such as the development of the RandOm Convolutional KErnel Transformation (ROCKET) classifier, it is possible to perform classification directly on short time segments from MEG resting-state recordings with remarkably high classification accuracies. In a cohort of 124 subjects, it was possible to assign windows of time series of 1 s in duration to the correct subject with above 99% accuracy. The achieved accuracies are vastly superior to those of previous methods while simultaneously requiring considerably shorter time segments.

8.
Front Neurosci ; 17: 1172549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027493

RESUMO

The cognitive impact of psychological trauma can manifest as a range of post-traumatic stress symptoms that are often attributed to impairments in learning from positive and negative outcomes, aka reinforcement learning. Research on the impact of trauma on reinforcement learning has mainly been inconclusive. This study aimed to circumscribe the impact of psychological trauma on reinforcement learning in the context of neural response in time and frequency domains. Two groups of participants were tested - those who had experienced psychological trauma and a control group who had not - while they performed a probabilistic classification task that dissociates learning from positive and negative feedback during a magnetoencephalography (MEG) examination. While the exposure to trauma did not exhibit any effects on learning accuracy or response time for positive or negative feedback, MEG cortical activity was modulated in response to positive feedback. In particular, the medial and lateral orbitofrontal cortices (mOFC and lOFC) exhibited increased activity, while the insular and supramarginal cortices showed decreased activity during positive feedback presentation. Furthermore, when receiving negative feedback, the trauma group displayed higher activity in the medial portion of the superior frontal cortex. The timing of these activity changes occurred between 160 and 600 ms post feedback presentation. Analysis of the time-frequency domain revealed heightened activity in theta and alpha frequency bands (4-10 Hz) in the lOFC in the trauma group. Moreover, dividing the two groups according to their learning performance, the activity for the non-learner subgroup was found to be lower in lOFC and higher in the supramarginal cortex. These differences were found in the trauma group only. The results highlight the localization and neural dynamics of feedback processing that could be affected by exposure to psychological trauma. This approach and associated findings provide a novel framework for understanding the cognitive correlates of psychological trauma in relation to neural dynamics in the space, time, and frequency domains. Subsequent work will focus on the stratification of cognitive and neural correlates as a function of various symptoms of psychological trauma. Clinically, the study findings and approach open the possibility for neuromodulation interventions that synchronize cognitive and psychological constructs for individualized treatment.

9.
Neuroimage ; 59(2): 1338-47, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-21875673

RESUMO

Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging.


Assuntos
Algoritmos , Encéfalo/citologia , Interpretação de Imagem Assistida por Computador/métodos , Iluminação/métodos , Microscopia de Polarização/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Neurônios/citologia , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Front Neurosci ; 16: 826083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250461

RESUMO

In our daily lives, we use eye movements to actively sample visual information from our environment ("active vision"). However, little is known about how the underlying mechanisms are affected by goal-directed behavior. In a study of 31 participants, magnetoencephalography was combined with eye-tracking technology to investigate how interregional interactions in the brain change when engaged in two distinct forms of active vision: freely viewing natural images or performing a guided visual search. Regions of interest with significant fixation-related evoked activity (FRA) were identified with spatiotemporal cluster permutation testing. Using generalized partial directed coherence, we show that, in response to fixation onset, a bilateral cluster consisting of four regions (posterior insula, transverse temporal gyri, superior temporal gyrus, and supramarginal gyrus) formed a highly connected network during free viewing. A comparable network also emerged in the right hemisphere during the search task, with the right supramarginal gyrus acting as a central node for information exchange. The results suggest that all four regions are vital to visual processing and guiding attention. Furthermore, the right supramarginal gyrus was the only region where activity during fixations on the search target was significantly negatively correlated with search response times. Based on our findings, we hypothesize that, following a fixation, the right supramarginal gyrus supplies the right supplementary eye field (SEF) with new information to update the priority map guiding the eye movements during the search task.

11.
J Autism Dev Disord ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512195

RESUMO

Visual information is organised according to visual grouping principles. In visual grouping tasks individuals with ASD have shown equivocal performance. We explored neural correlates of Gestalt grouping in individuals with and without ASD. Neuromagnetic activity of individuals with (15) and without (18) ASD was compared during a visual grouping task testing grouping by proximity versus similarity. Individuals without ASD showed stronger evoked responses with earlier peaks in response to both grouping types indicating an earlier neuronal differentiation between grouping principles in individuals without ASD. In contrast, individuals with ASD showed particularly prolonged processing of grouping by similarity suggesting a high demand of neural resources. The neuronal processing differences found could explain less efficient grouping performance observed behaviourally in ASD.

12.
Neuroimage ; 54(2): 1091-101, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20832489

RESUMO

Signal transmission between different brain regions requires connecting fiber tracts, the structural basis of the human connectome. In contrast to animal brains, where a multitude of tract tracing methods can be used, magnetic resonance (MR)-based diffusion imaging is presently the only promising approach to study fiber tracts between specific human brain regions. However, this procedure has various inherent restrictions caused by its relatively low spatial resolution. Here, we introduce 3D-polarized light imaging (3D-PLI) to map the three-dimensional course of fiber tracts in the human brain with a resolution at a submillimeter scale based on a voxel size of 100 µm isotropic or less. 3D-PLI demonstrates nerve fibers by utilizing their intrinsic birefringence of myelin sheaths surrounding axons. This optical method enables the demonstration of 3D fiber orientations in serial microtome sections of entire human brains. Examples for the feasibility of this novel approach are given here. 3D-PLI enables the study of brain regions of intense fiber crossing in unprecedented detail, and provides an independent evaluation of fiber tracts derived from diffusion imaging data.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/ultraestrutura , Imageamento Tridimensional/métodos , Fibras Nervosas/ultraestrutura , Vias Neurais/anatomia & histologia , Birrefringência , Humanos , Processamento de Imagem Assistida por Computador/métodos
13.
PLoS One ; 16(2): e0247408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630915

RESUMO

The suppression of distracting information in order to focus on an actual cognitive goal is a key feature of executive functions. The use of brain imaging methods to investigate the underlying neurobiological brain activations that occur during conflict processing have demonstrated a strong involvement of the fronto-parietal attention network (FPAN). Surprisingly, the directional interconnections, their time courses and activations at different frequency bands remain to be elucidated, and thus, this constitutes the focus of this study. The shared information flow between brain areas of the FPAN is provided for frequency bands ranging from the theta to the lower gamma band (4-40 Hz). We employed an adaptation of the Simon task utilizing Magnetoencephalography (MEG). Granger causality was applied to investigate interconnections between the active brain regions, as well as their directionality. Following stimulus onset, the middle frontal precentral cortex and superior parietal cortex were significantly activated during conflict processing in a time window of between 300 to 600ms. Important differences in causality were found across frequency bands between processing of conflicting stimuli in the left as compared to the right visual hemifield. The exchange of information from and to the FPAN was most prominent in the beta band. Moreover, the anterior cingulate cortex and the anterior insula represented key areas for conflict monitoring, either by receiving input from other areas of the FPAN or by generating output themselves. This indicates that the salience network is at least partly involved in processing conflict information. The present study provides detailed insights into the underlying neural mechanisms of the FPAN, especially regarding its temporal characteristics and directional interconnections.


Assuntos
Giro do Cíngulo/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico/métodos , Cognição/fisiologia , Conflito Psicológico , Humanos , Magnetoencefalografia/métodos , Masculino , Adulto Jovem
14.
Neuroimage ; 50(1): 250-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969096

RESUMO

In verbal communication, prosodic codes may be phylogenetically older than lexical ones. Little is known, however, about early, automatic encoding of emotional prosody. This study investigated the neuromagnetic analogue of mismatch negativity (MMN) as an index of early stimulus processing of emotional prosody using whole-head magnetoencephalography (MEG). We applied two different paradigms to study MMN; in addition to the traditional oddball paradigm, the so-called optimum design was adapted to emotion detection. In a sequence of randomly changing disyllabic pseudo-words produced by one male speaker in neutral intonation, a traditional oddball design with emotional deviants (10% happy and angry each) and an optimum design with emotional (17% happy and sad each) and nonemotional gender deviants (17% female) elicited the mismatch responses. The emotional category changes demonstrated early responses (<200 ms) at both auditory cortices with larger amplitudes at the right hemisphere. Responses to the nonemotional change from male to female voices emerged later ( approximately 300 ms). Source analysis pointed at bilateral auditory cortex sources without robust contribution from other such as frontal sources. Conceivably, both auditory cortices encode categorical representations of emotional prosodic. Processing of cognitive feature extraction and automatic emotion appraisal may overlap at this level enabling rapid attentional shifts to important social cues.


Assuntos
Afeto , Encéfalo/fisiologia , Emoções , Percepção da Fala/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Magnetoencefalografia , Masculino , Testes Neuropsicológicos , Caracteres Sexuais , Fala , Fatores de Tempo , Adulto Jovem
15.
Neuroimage ; 49(2): 1241-8, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19733674

RESUMO

Polarized light imaging (PLI) enables the evaluation of fiber orientations in histological sections of human postmortem brains, with ultra-high spatial resolution. PLI is based on the birefringent properties of the myelin sheath of nerve fibers. As a result, the polarization state of light propagating through a rotating polarimeter is changed in such a way that the detected signal at each measurement unit of a charged-coupled device (CCD) camera describes a sinusoidal signal. Vectors of the fiber orientation defined by inclination and direction angles can then directly be derived from the optical signals employing PLI analysis. However, noise, light scatter and filter inhomogeneities interfere with the original sinusoidal PLI signals. We here introduce a novel method using independent component analysis (ICA) to decompose the PLI images into statistically independent component maps. After decomposition, gray and white matter structures can clearly be distinguished from noise and other artifacts. The signal enhancement after artifact rejection is quantitatively evaluated in 134 histological whole brain sections. Thus, the primary sinusoidal signals from polarized light imaging can be effectively restored after noise and artifact rejection utilizing ICA. Our method therefore contributes to the analysis of nerve fiber orientation in the human brain within a micrometer scale.


Assuntos
Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Luz , Bainha de Mielina/ultraestrutura , Óptica e Fotônica/métodos , Artefatos , Encéfalo/ultraestrutura , Calibragem , Poeira , Humanos , Fibras Nervosas Mielinizadas/ultraestrutura , Fibras Nervosas Amielínicas/ultraestrutura
16.
Eur J Neurosci ; 31(10): 1818-27, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20584186

RESUMO

Higher association cortices as well as unisensory areas can support multisensory integration [D. Senkowski et al. (2008) Trends Neurosci., 31, 401-409]. The present study investigated whether audiovisual integration of emotional information emerges early at unisensory or later at higher association cortices. Emotional stimuli were presented in three blocks: audiovisual (AV), auditory (A) and visual (V). Eighteen participants performed a delayed emotional recognition task (happy, angry or neutral prosody and/or facial expression) while whole-brain magnetoencephalography (MEG) data were obtained. Time-frequency evoked and total power analyses were performed on the sensor data, and source localization of the frequencies of interest performed via a synthetic aperture magnetometry beamformer. To examine crossmodal integration between bimodal and unimodal conditions, two contrasts were specified: AV > A and AV > V. In the AV > A contrast, early effects were observed on both the temporal and the occipital evoked responses. However, at the source level, early alpha suppression was limited to the occipital sources without changes in temporal cortices. In the AV > V contrast, sensor and source findings revealed increased alpha suppression only in temporal cortices, with no changes in visual cortex. Thus, no crossmodal effect in unisensory areas emerged. Instead, increased frontal alpha activity in both the AV > A and AV > V contrasts supports the view that affective information from face and prosody converges at higher association cortices.


Assuntos
Córtex Cerebral/fisiologia , Emoções/fisiologia , Expressão Facial , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Córtex Cerebral/citologia , Interpretação Estatística de Dados , Eletrofisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Neurônios/fisiologia , Lobo Occipital/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
17.
Case Rep Neurol Med ; 2020: 8597062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257474

RESUMO

In the past two decades, many studies have shown the paradoxical efficacy of zolpidem, a hypnotic used to induce sleep, in transiently alleviating various disorders of consciousness such as traumatic brain injury (TBI), dystonia, and Parkinson's disease. The mechanism of action of this effect of zolpidem is of great research interest. In this case study, we use magnetoencephalography (MEG) to investigate a fully conscious, ex-coma patient who suffered from neurological difficulties for a few years due to traumatic brain injury. For a few years after injury, the patient was under medication with zolpidem that drastically improved his symptoms. MEG recordings taken before and after zolpidem showed a reduction in power in the theta-alpha (4-12 Hz) and lower beta (15-20 Hz) frequency bands. An increase in power after zolpidem intake was found in the higher beta/lower gamma (20-43 Hz) frequency band. Source level functional connectivity measured using weighted-phase lag index showed changes after zolpidem intake. Stronger connectivity between left frontal and temporal brain regions was observed. We report that zolpidem induces a change in MEG resting power and functional connectivity in the patient. MEG is an informative and sensitive tool to detect changes in brain activity for TBI.

18.
Neuroimage ; 47(4): 1921-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19442746

RESUMO

The insula has consistently been shown to be involved in processing stimuli that evoke the emotional response of disgust. Recently, its specificity for processing disgust has been challenged and a broader role of the insula in the representation of interoceptive information has been suggested. Studying the temporal dynamics of insula activation during emotional processing can contribute valuable information pertaining to this issue. Few studies have addressed the insula's putative specificity to disgust and the dynamics of its underlying neural processes. In the present study, neuromagnetic responses of 13 subjects performing an emotional continuous performance task (CPT) to faces with disgust, happy, and neutral expressions were obtained. Magnetic field tomography extracted the time course of bilateral insula activities. Right insula activation was stronger to disgust and happy than neutral facial expressions at about 200 ms after stimulus onset. Later only at about 350 ms after stimulus onset the right insula was activated stronger to disgust than happy facial expressions. Thus, the early right insula response reflects activation to emotionally arousing stimuli regardless of valence, and the later right insula response differentiates disgust from happy facial expressions. Behavioral performance but not the insula activity differed between 100 ms and 1000 ms presentation conditions. Present findings support the notion that the insula is involved in the representation of interoceptive information.


Assuntos
Emoções/fisiologia , Expressão Facial , Magnetoencefalografia/métodos , Percepção Visual/fisiologia , Adulto , Feminino , Felicidade , Humanos , Masculino , Adulto Jovem
19.
Exp Brain Res ; 198(2-3): 391-402, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19449155

RESUMO

We investigated the brain responses to the transitions from the static to moving audiovisual stimuli using magnetoencephalography. The spatially congruent auditory and visual stimuli moved in the same direction whereas the incongruent stimuli moved in the opposite directions. Using dipole modeling we found that the static-to-moving transitions evoked a neural response in the primary auditory cortex bilaterally. The response started about 100 ms after the motion onset from a negative component (mvN1) and lasted during the entire interval of the stimulus motion. The mvN1 component was similar to the classical auditory N1 response to the static sound, but had smaller amplitude and later latency. The coordinates of the mvN1 and N1 dipoles in the primary auditory cortex were also similar. The amplitude of the auditory response to the moving stimuli appears to be sensitive to spatial congruency of the audiovisual motion; it was larger in the incongruent than congruent condition. This is evidence that the moving visual stimuli modulate the early sensory activity in the primary auditory cortex. Such early audiovisual integration may be specific for motion processing.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Percepção de Movimento/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Potenciais Evocados , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Psicofísica , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
20.
J Neurosci Methods ; 168(2): 325-33, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18093661

RESUMO

Data processing techniques in electroencephalography (EEG) and magnetoencephalography (MEG) need user interactions. However, particularly in clinical applications, fast and objective data processing is important. Here we present an observer-independent method for EEG and MEG analysis of mismatch negativity (MMN) that allows reliable estimation of source activity based on objective anatomical references. The procedure integrates several steps including artifact rejection, source estimation and statistical analysis. It enables the evaluation of source activity in a fully automatic and unsupervised manner. To test its feasibility we obtained EEG and MEG responses in an auditory oddball paradigm in 12 healthy volunteers. The automatized method of EEG and MEG data analysis estimated source activity. The automatically detected MMN was closely comparable with the results obtained by a user-controlled method based on the dipole fitting. The presented workflow can be performed easily, rapidly, and reliably. This development may open new fields in research and clinical applications of source-based EEG and MEG.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Magnetoencefalografia/métodos , Reflexo de Sobressalto/fisiologia , Adulto , Eletroencefalografia/estatística & dados numéricos , Processamento Eletrônico de Dados , Eletrofisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Magnetoencefalografia/estatística & dados numéricos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA