Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 10(9): 3307-11, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20687519

RESUMO

We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

2.
Nat Mater ; 8(3): 194-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19182788

RESUMO

In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets (SMMs). These have been intensively investigated for their rich quantum behaviour but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe(4) complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.

3.
Chemistry ; 15(26): 6456-67, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19462389

RESUMO

Tunable single-molecule magnets: The spin-level landscape in a series of Fe(III) (4) single-molecule magnets with propeller-like structure was analyzed by means of high-frequency EPR spectroscopy. The zero-field splitting parameter D of the ground S=5 spin state correlates strongly with the pitch of the propeller gamma (see picture), and thus provides a simple link between molecular structure and magnetic behavior.We report three novel tetrairon(III) single-molecule magnets with formula [Fe(4)(L)(2)(dpm)(6)] (Hdpm=2,2,6,6-tetramethylheptane-3,5-dione), prepared by using pentaerythritol monoether ligands H(3)L=R'OCH(2)C(CH(2)OH)(3) with R'=allyl (1), (R,S)-2-methyl-1-butyl (2), and (S)-2-methyl-1-butyl (3), along with a new crystal phase of the complex containing H(3)L=11-(acetylthio)-2,2-bis(hydroxymethyl)- undecan-1-ol (4). High-frequency EPR (HF-EPR) spectra at low temperature were collected on powder samples in order to determine the zero-field splitting (zfs) parameters in the ground S=5 spin state. In 1-4 and in other eight isostructural compounds previously reported, a remarkable correlation is found between the axial zfs parameter D and the pitch gamma of the propeller-like structure. The relationship is directly demonstrated by 1, which features both structurally and magnetically inequivalent molecules in the crystal. The dynamics of magnetization has been investigated by ac susceptometry, and the results analyzed by master-matrix calculations. The large rhombicities of 2 and 3 were found to be responsible for the fast magnetic relaxation observed in the two compounds. However, complex 3 shows an additional faster relaxation mechanism which is unaccounted for by the set of spin Hamiltonian parameters determined by HF-EPR.

4.
Org Lett ; 5(25): 4863-6, 2003 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-14653693

RESUMO

A new chiral derivatizing agent for ee determination of 1,2-diols via (1)H NMR is described. (S)-(+)-N-acetylphenylglycineboronic acid (1) is synthesized in enantiomerically pure form; its reaction with chiral diols quantitatively yields cyclic boronic esters 5a-g. The latter show a remarkably high diastereodifferentiation of proton NMR signals useful for de determination. [reaction: see text]

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA