Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuroimage ; 128: 193-208, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747748

RESUMO

Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Eletroencefalografia , Modelos Anatômicos , Análise de Elementos Finitos , Cabeça/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Neurológicos
2.
Neuroimage ; 62(1): 418-31, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22584227

RESUMO

The low-conducting human skull is known to have an especially large influence on electroencephalography (EEG) source analysis. Because of difficulties segmenting the complex skull geometry out of magnetic resonance images, volume conductor models for EEG source analysis might contain inaccuracies and simplifications regarding the geometry of the skull. The computer simulation study presented here investigated the influences of a variety of skull geometry deficiencies on EEG forward simulations and source reconstruction from EEG data. Reference EEG data was simulated in a detailed and anatomically plausible reference model. Test models were derived from the reference model representing a variety of skull geometry inaccuracies and simplifications. These included erroneous skull holes, local errors in skull thickness, modeling cavities as bone, downward extension of the model and simplifying the inferior skull or the inferior skull and scalp as layers of constant thickness. The reference EEG data was compared to forward simulations in the test models, and source reconstruction in the test models was performed on the simulated reference data. The finite element method with high-resolution meshes was employed for all forward simulations. It was found that large skull geometry inaccuracies close to the source space, for example, when cutting the model directly below the skull, led to errors of 20mm and more for extended source space regions. Local defects, for example, erroneous skull holes, caused non-negligible errors only in the vicinity of the defect. The study design allowed a comparison of influence size, and guidelines for modeling the skull geometry were concluded.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Crânio/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-34648453

RESUMO

Because current flow cannot be measured directly in the intact retina or brain, current density distribution models were developed to estimate it during magnetic or electrical stimulation. A paradigm is now needed to evaluate if current flow modeling can be related to physiologically meaningful signs of true current distribution in the human brain. We used phosphene threshold measurements (PTs) as surrogate markers of current-flow to determine if PTs, evoked by transcranial alternating current stimulation (tACS), can be matched with current density estimates generated by head model-based computer simulations. Healthy, male subjects (n=15) were subjected to three-staged PT measurements comparing six unilateral and one bilateral stimulation electrode montages according to the 10/20 system: Fp2-Suborbital right (So), Fp2-right shoulder (rS), Fp2-Cz, Fp2- O2, So-rS, Cz-F8 and F7-F8. The stimulation frequency was set at 16 Hz. Subjects were asked to report the appearance and localization of phosphenes in their visual field for every montage. Current density models were built using multi-modal imaging data of a standard brain, meshed with isotropic conductivities of different tissues of the head using the SimBio and SCIRun software packages. We observed that lower PTs were associated with higher simulated current levels in the unilateral montages of the model head, and shorter electrode distances to the eye had lower PTs. The lowest mean PT and the lowest variability were found in the F7-F8 montage ( [Formula: see text]). Our results confirm the hypothesis that phosphenes are primarily of retinal origin, and they provide the first in vivo evidence that computer models of current flow using head models are a valid tool to estimate real current flow in the human eye and brain.


Assuntos
Fosfenos , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Estimulação Elétrica , Humanos , Masculino , Retina , Estimulação Magnética Transcraniana
4.
Neuroimage ; 44(2): 399-410, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18848896

RESUMO

The major goal of the evaluation in presurgical epilepsy diagnosis for medically intractable patients is the precise reconstruction of the epileptogenic foci, preferably with non-invasive methods. This paper evaluates whether surface electroencephalography (EEG) source analysis based on a 1 mm anisotropic finite element (FE) head model can provide additional guidance for presurgical epilepsy diagnosis and whether it is practically feasible in daily routine. A 1 mm hexahedra FE volume conductor model of the patient's head with special focus on accurately modeling the compartments skull, cerebrospinal fluid (CSF) and the anisotropic conducting brain tissues was constructed using non-linearly co-registered T1-, T2- and diffusion-tensor-magnetic resonance imaging data. The electrodes of intra-cranial EEG (iEEG) measurements were extracted from a co-registered computed tomography image. Goal function scan (GFS), minimum norm least squares (MNLS), standardized low resolution electromagnetic tomography (sLORETA) and spatio-temporal current dipole modeling inverse methods were then applied to the peak of the averaged ictal discharges EEG data. MNLS and sLORETA pointed to a single center of activity. Moving and rotating single dipole fits resulted in an explained variance of more than 97%. The non-invasive EEG source analysis methods localized at the border of the lesion and at the border of the iEEG electrodes which mainly received ictal discharges. Source orientation was towards the epileptogenic tissue. For the reconstructed superficial source, brain conductivity anisotropy and the lesion conductivity had only a minor influence, whereas a correct modeling of the highly conducting CSF compartment and the anisotropic skull was found to be important. The proposed FE forward modeling approach strongly simplifies meshing and reduces run-time (37 ms for one forward computation in the model with 3.1 million unknowns), corroborating the practical feasibility of the approach.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Modelos Neurológicos , Criança , Simulação por Computador , Análise de Elementos Finitos , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Ophthalmologe ; 94(12): 877-81, 1997 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-9487757

RESUMO

BACKGROUND: Recent studies have shown the usefulness of pars plana vitrectomy with the use of growth factors in the treatment of macular holes. Autologous platelet concentrates contain many growth factors to stimulate glial wound healing. PATIENTS: Nineteen patients with idiopathic macular hole underwent vitrectomy, membrane peeling, air injection and installation of autologous platelet concentrate (0.1 ml). The platelet concentrate contained a mean of 1.8 x 10(9) platelets/ml. RESULTS: The anatomic success rate in stage 2 macular hole was 100%, in stage 3, 82% and in stage 4, 50%. Visual acuity improved in all patients with stage 2 (two lines) and in 73% of stage 3 at least (one line). CONCLUSION: Platelets are effective in the treatment of macular holes due to the high amount of different growth factors (PDGF, EGF, bFGF, IGF-1) which have a high affinity binding to Müller cells helping to seal the hole by photoreceptor adaption.


Assuntos
Transfusão de Sangue Autóloga , Transfusão de Plaquetas , Perfurações Retinianas/cirurgia , Vitrectomia , Idoso , Feminino , Humanos , Masculino , Fator de Crescimento Derivado de Plaquetas/administração & dosagem , Perfurações Retinianas/etiologia , Resultado do Tratamento , Acuidade Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA