Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Neurosci ; 22(4): 96, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37519170

RESUMO

OBJECTIVE: Few studies have reported the direct effect of C-X-C motif chemokine ligand 10 (CXCL10) and Neuregulin 1 (Nrg1) on neurons after spinal cord injury (SCI). This study reports the role of CXCL10 in the regulation of neuronal damage after SCI and the potential therapeutic effect of Nrg1. METHODS: The expression level of CXCL10 and Nrg1 in SCI mice was analyzed in the Gene Expression Omnibus DataSets, followed by immunohistochemical confirmation using a mouse SCI model. HT22 cells and NSC34 cells were treated with CXCL10 and Nrg1, individually or in combination, and then assayed for cell viability. The percentage of wound closure was determined through the cell scratch injury model using HT22 and NSC34 cells. Potential molecular mechanisms were also tested in response to either the individual administration of CXCL10 and Nrg1 or a mixture of both molecules. RESULTS: CXCL10 expression was significantly increased in both young and old mice subjected to SCI, while Nrg1 expression was significantly decreased. CXCL10 induced a decrease in cell viability, which was partially reversed by Nrg1. CXCL10 failed to inhibit scratch healing in HT22 and NSC34 cells, while Nrg1 promoted scratch healing. At the molecular level, CXCL10-activated cleaved caspase 9 and cleaved caspase 3 were both inhibited by Nrg1 through pERK1/2 signaling in HT22 and NSC34 cells. CONCLUSIONS: CXCL10 is upregulated in SCI. Despite the negative effect on cell viability, CXCL10 failed to inhibit the scratch healing of HT22 and NSC34 cells. Nrg1 may protect neurons by partially antagonizing the effect of CXCL10.


Assuntos
Neuregulina-1 , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Neuregulina-1/farmacologia , Neurônios/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Camundongos
2.
Int J Biol Macromol ; 275(Pt 1): 133659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969045

RESUMO

The age-related alterations in pituitary function, including changes in prolactin (PRL) production contributes to the systemic susceptibility to age-related diseases. Our previous research has shown the involvement of Nrg1 in regulating the expression and secretion of PRL. However, the precise role of Nrg1 in mitigating the senescence of pituitary lactotrophs and the underlying mechanisms are yet to be comprehended. Here, data from the GEPIA database was used to evaluate the association between transient receptor potential cation channel subfamily M member 8 (TRPM8) and PRL in normal human pituitary tissues, followed by immunofluorescence verification using a human pituitary tissue microarray. TRPM8 levels showed a significant positive association with PRL expression in normal human pituitary tissues, and both TRPM8 and PRL levels declined during aging, suggesting that TRPM8 may regulate pituitary aging by affecting PRL production. It was also found that treatment with exogenous neuregulin 1 (Nrg1) markedly delayed the senescence of GH3 cells (rat lactotroph cell line) generated by D-galactose (D-gal). In addition, melatonin reduced the levels of senescence-related markers in senescent pituitary cells by promoting Nrg1 / ErbB4 signaling, stimulating PRL expression and secretion. Further investigation showed that Nrg1 attenuated senescence in pituitary cells by increasing TRPM8 expression. Downregulation of TRPM8 activation eliminated Nrg1-mediated amelioration of pituitary cell senescence. These findings demonstrate the critical function of Nrg1 / ErbB signaling in delaying pituitary lactotroph cell senescence and enhancing PRL production via promoting TRPM8 expression under the modulation of melatonin.


Assuntos
Senescência Celular , Lactotrofos , Melatonina , Neuregulina-1 , Prolactina , Transdução de Sinais , Canais de Cátion TRPM , Prolactina/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Humanos , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Lactotrofos/metabolismo , Lactotrofos/efeitos dos fármacos , Melatonina/farmacologia , Animais , Ratos , Neuregulina-1/metabolismo , Neuregulina-1/genética , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Envelhecimento/metabolismo , Receptor ErbB-4/metabolismo , Receptor ErbB-4/genética , Linhagem Celular , Masculino , Feminino
3.
Exp Ther Med ; 27(2): 72, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234625

RESUMO

In contrast to prior findings that have illustrated the conversion of non-neuronal cells into functional neurons through the specific targeting of polypyrimidine tract-binding protein 1 (PTBP1), accumulated evidence suggests the impracticality of inducing neuronal transdifferentiation through suppressing PTBP1 expression in pathological circumstances. Therefore, the present study explored the effect of knocking down PTBP1 under physiological conditions on the transdifferentiation of mouse hippocampal neuron HT22 cells and mouse astrocyte (MA) cells. A total of 20 µM negative control small interfering (si)RNA and siRNA targeting PTBP1 were transfected into HT22 and MA cells using Lipo8000™ for 3 and 5 days, respectively. The expression of early neuronal marker ßIII-Tubulin and mature neuronal markers NeuN and microtubule-associated protein 2 (MAP2) were detected using western blotting. In addition, ßIII-tubulin, NeuN and MAP2 were labeled with immunofluorescence staining to evaluate neuronal cell differentiation in response to PTBP1 downregulation. Under physiological conditions, no significant changes in the expression of ßIII-Tubulin, NeuN and MAP2 were found after 3 and 5 days of knockdown of PTBP1 protein in both HT22 and MA cells. In addition, the immunofluorescence staining results showed no apparent transdifferentiation in maker levels and morphology. The results suggested that the knockdown of PTBP1 failed to induce neuronal differentiation under physiological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA