Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(11): 3470-3475, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451177

RESUMO

Monolayer transition metal dichalcogenide VTe2 exhibits multiple charge density wave (CDW) phases, mainly (4 × 4) and (4 × 1). Here we report facile dynamic and tens-of-nanometer scale switching between these CDW phases with gentle bias pulses in scanning tunneling microscopy. Bias pulses purposely stimulate a reversible random CDW symmetry change between the isotropic (4 × 4) and anisotropic (4 × 1) CDWs, as well as CDW phase slips and rotation. The switching threshold of ∼1.0 V is independent of bias polarity, and the switching rate varies linearly with the tunneling current. Density functional theory calculations indicate that a coherent CDW phase switching incurs an energy barrier of ∼2.0-3.0 eV per (4 × 4) unit cell. While there is a challenge in understanding the observed large-area CDW random fluttering, we provide some possible explanations. The ability to manipulate electronic CDW phases sheds new light on tailoring CDW properties on demand.

2.
Nanotechnology ; 34(23)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36848665

RESUMO

Atomically thin bismuth films (2D Bi) are becoming a promising research area due to their unique properties and their wide variety of applications in spintronics, electronic and optoelectronic devices. We report on the structural properties of Bi on Au(110), explored by low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. At a Bi coverage lower than one monolayer (1 ML) various reconstructions are observed, we focus on Bi/Au(110)-c(2 × 2) reconstruction (at 0.5 ML) and Bi/Au(110)-(3 × 3) structure (at 0.66 ML). We propose models for both structures based on STM measurements and further confirm by DFT calculations.

3.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903284

RESUMO

We show that through the introduction of short dimethylsiloxane chains, it was possible to suppress the crystalline state of CBP in favor of various types of organization, transitioning from a soft crystal to a fluid liquid crystal mesophase, then to a liquid state. Characterized by X-ray scattering, all organizations reveal a similar layered configuration in which layers of edge-on lying CBP cores alternate with siloxane. The difference between all CBP organizations essentially lay on the regularity of the molecular packing that modulates the interactions of neighboring conjugated cores. As a result, the materials show quite different thin film absorption and emission properties, which could be correlated to the features of the chemical architectures and the molecular organizations.

4.
Phys Chem Chem Phys ; 24(24): 14937-14946, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686497

RESUMO

The adsorption of phthalocyanine (H2Pc) on the 6H-SiC(0001)-(3 × 3) surface is investigated using X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS), and density functional theory (DFT) calculations. Spectral features are tracked from the submonolayer to the multilayer growth regime, observing a significant modification of spectroscopic signals at low coverage with respect to the multilayer films, where molecules are weakly interacting. Molecules stay nearly flat on the surface at the mono and submonolayers. Previously proposed adsorption models, where the molecule binds by two N atoms to corresponding Si adatoms, do not reproduce the experimental spectra at the submonolayer coverage. We find instead that another adsorption model where the molecule replaces the two central H atoms by a Si adatom, effectively forming Si-phthalocyanine (SiPc), is both energetically more stable and yields in combination a better agreement between the experimental and simulated spectra. This suggests that the 6H-SiC(0001)-(3 × 3) surface may be a candidate substrate for the on-surface synthesis of SiPc molecules.

5.
Phys Chem Chem Phys ; 24(11): 6836-6844, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35244656

RESUMO

The single-molecular conductance of a redox active viologen molecular bridge between Au|graphene electrodes has been studied in an electrochemical gating configuration in an ionic liquid medium. A clear "off-on-off" conductance switching behaviour has been achieved through gating of the redox state when the electrochemical potential is swept. The Au|viologen|graphene junctions show single-molecule conductance maxima centred close to the equilibrium redox potentials for both reduction steps. The peak conductance of Au|viologen|graphene junctions during the first reduction is significantly higher than that of previously measured Au|viologen|Au junctions. This shows that even though the central viologen moiety is not directly linked to the enclosing electrodes, substituting one gold contact for a graphene one nevertheless has a significant impact on junction conductance values. The experimental data was compared against two theoretical models, namely a phase coherent tunnelling and an incoherent "hopping" model. The former is a simple gating monoelectronic model within density functional theory (DFT) which discloses the charge state evolution of the molecule with electrode potential. The latter model is the collective Kuznetsov Ulstrup model for 2-step sequential charge transport through the redox centre in the adiabatic limit. The comparison of both models to the experimental data is discussed for the first time. This work opens perspectives for graphene-based molecular transistors with more effective gating and fundamental understanding of electrochemical electron transfer at the single molecular level.

6.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34814126

RESUMO

This work reports on the electron-induced modification of NaCl thin film grown on Ag(110). We show using low energy electron diffraction that electron beam bombardment leads to desorption and formation of Cl vacancy defects on NaCl surface. The topographic structure of these defects is studied using scanning tunneling microscopy (STM) showing the Cl defects as depressions on the NaCl surface. Most of the observed defects are mono-atomic vacancies and are located on flat NaCl terraces. Auger electron spectroscopy confirms the effect of electron exposure on NaCl thin films showing Cl atoms desorption from the surface. Using density functional theory taken into account the van der Waals dispersion interactions, we confirm the observed experimental STM measurements with STM simulation. Furthermore, comparing the adsorption of defect free NaCl and defective NaCl monolayer on Ag(110) surfaces, we found an increase of the adhesion energy and the charge transfer between the NaCl film and the substrate due to the Cl vacancy. In details, the adhesion energy increases between the NaCl film and the metallic Ag substrate from 30.4 meV Å-2for the NaCl film without Cl vacancy and from 39.5 meV Å-2for NaCl film with a single Cl vacancy. The charge transfer from the NaCl film to the Ag substrate is enhanced when the vacancy is created, from 0.63e-to 1.25e-.

7.
Phys Chem Chem Phys ; 23(37): 21163-21171, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528653

RESUMO

The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed. Here in the same line, we consider oligopthiophene based hybrid gold-graphene junctions and we measure their electrical properties using the STM-I(s) method in order to determine their attenuation factor and the effect of specific anchoring groups. The results are supported by density functional theory (DFT) calculations, and exhibit a similar behavior to what is observed at alkane-based junctions.

8.
Nano Lett ; 20(9): 6908-6913, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32830982

RESUMO

Incorporating functional atomic sites in graphene is essential for realizing advanced two-dimensional materials. Doping graphene with nitrogen offers the opportunity to tune its chemical activity with significant charge redistribution occurring between molecules and substrate. The necessary atomic scale understanding of how this depends on the spatial distribution of dopants, as well as their positions relative to the molecule, can be provided by scanning tunneling microscopy. Here we show that a noncovalently bonded molecule such as CoPc undergoes a variable charge transfer when placed on N-doped graphene; on a nitrogen pair, it undergoes a redox reaction with an integral charge transfer whereas a lower fractional charge transfer occurs over a single nitrogen. Thus, the charge state of molecules can be tuned by suitably tailoring the conformation of dopant atoms.

9.
Nanotechnology ; 31(49): 495602, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32975225

RESUMO

The synthesis of blue phosphorene by molecular beam epitaxy (MBE) has recently come under the spotlight due to its potential applications in electronic and optoelectronic devices. However, this synthesis remains a significant challenge. The surface reactivity between the P atoms and the Au atoms should be considered for the P/Au(111) system. In the MBE process, the temperature of the substrate is a key parameter for the growth of blue phosphorene. During the initial growth stage, irregularly shaped Phosphorus clusters grow on top of Au(111) surface at room temperature. When the substrate temperature is increased, these clusters transform into a phosphorene-like structure with a honeycomb lattice. An atom exchange reaction is observed between the P and first layer Au atoms under thermal activation at higher temperature, where the P atoms replace Au atoms to form a blue phosphorene structure within the top Au layer and at the step edges.

10.
Phys Chem Chem Phys ; 22(14): 7259-7267, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32207467

RESUMO

Combining STM measurements on three different substrates (HOPG, MoS2, and Au[111]) together with DFT calculations allow for analysis of the origin of the self-assembly of 4-cyano-4'-n-decylbiphenyl (10CB) molecules into kinked row structures using a previously developed phenomenological model. This molecule has an alkyl chain with 10 carbons and a cyanobiphenyl group with a particularly large dipole moment. 10CB represents a toy model that we use here to unravel the relationship between the induced kinked structure, in particular the corresponding chirality expression, and the balanced intermolecular/molecule-substrate interaction. We show that the local ordered structure is driven by the typical alkyl chain/substrate interaction for HOPG and Au[111] and the cyanobiphenyl group/substrate interaction for MoS2. The strongest molecule/substrate interactions are observed for MoS2 and Au[111]. These strong interactions should have led to non-kinked, commensurate adsorbed structures. However, this latter appears impossible due to steric interactions between the neighboring cyanobiphenyl groups that lead to a fan-shape structure of the cyanobiphenyl packing on the three substrates. As a result, the kink-induced chirality is particularly large on MoS2 and Au[111]. A further breaking of symmetry is observed on Au[111] due to an asymmetry of the facing molecules in the rows induced by similar interactions with the substrate of both the alkyl chain and the cyanobiphenyl group. We calculate that the overall 10CB/Au[111] interaction is of the order of 2 eV per molecule. The close 10CB/MoS2 interaction, in contrast, is dominated by the cyanobiphenyl group, being particularly large possibly due to dipole-dipole interactions between the cyanobiphenyl groups and the MoS2 substrate.

11.
Phys Chem Chem Phys ; 22(24): 13498-13504, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32530005

RESUMO

The single molecule conductance of hybrid platinum/alkanedithiol/graphene junctions has been investigated with a focus on understanding the influence of employing two very different contact types. We call this an "anti-symmetric" configuration, with the two different contacts here being platinum and graphene, which respectively provide very different electronic coupling to the alkanedithiol bridge. The conductance of these junctions is experimentally investigated by using a non-contact scanning tunneling microscopy (STM) based method called the I(s) technique. These experimental determinations are supported by density functional theory (DFT) calculations. These alkanedithiol bridging molecules conduct electric current through the highest occupied molecular orbital (HOMO), and junctions formed with Pt/graphene electrode pairs are slightly more conductive than those formed with Au/graphene electrodes which we previously investigated. This is consistent with the lower work function of gold than that of platinum. The measured conductance decays exponentially with the length of the molecular bridge with a low tunneling decay constant, which has a similar value for Pt/graphene and Au/graphene electrode pairs, respectively. These new results underline the importance of the coupling asymmetry between the two electrodes, more than the type of the metal electrode itself. Importantly, the tunneling decay constant is much lower than that of alkanedithiols with the symmetrical equivalent, i.e. identical metal electrodes. We attribute this difference to the relatively weak van der Waals coupling at the graphene interface and the strong bond dipole at the Pt-S interface, resulting in a decrease in the potential barrier at the interface.

12.
Chemphyschem ; 20(14): 1830-1836, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31108024

RESUMO

A combined experimental and theoretical study on molecular junctions with asymmetry in both the electrode type and in the anchoring group type is presented. A scanning tunnelling microscope is used to create the "asymmetric" Au-S-(CH2 )n-COOH-graphene molecular junctions and determine their conductance. The measurements are combined with electron transport calculations based on density functional theory (DFT) to analyze the electrical conductance and its length attenuation factor from a series of junctions of different molecular length (n). These results show an unexpected trend with a rather high conductance and a smaller attenuation factor for the Au-S-(CH2 )n -COOH-graphene configuration compared to the equivalent junction with the "symmetrical" COOH contacting using the HOOC-(CH2 )n -COOH series. Owing to the effect of the graphene electrode, the attenuation factor is also smaller than the one obtained for Au/Au electrodes. These results are interpreted through the relative molecule/electrode couplings and molecular level alignments as determined with DFT calculations. In an asymmetric junction, the electrical current flows through the less resistive conductance channel, similarly to what is observed in the macroscopic regime.

13.
Org Biomol Chem ; 16(43): 8106-8114, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30328882

RESUMO

The outstanding properties of porphyrins and the extreme versatility of their synthesis and their functionalisation constitute real assets for the fabrication of opto- and electroactive materials or for biological applications. In the large collection of porphyrinic structures, meso-substituted anthracenylporphyrins are among the less studied. Here, we synthesised the 5,10,15,20-tetra-bromoanthracenylporphyrin (BrTAP) and we investigated its chemical reactivity by post-synthetic modification using Suzuki-Miyaura cross coupling reactions with a series of boronic acids to generate a collection of original tetra-anthracenyl porphyrin based molecules: tetraphenylanthracenylporphyrin (TPAP), tetratolylanthracenylporphyrin (TTAP), tetramethoxyphenylanthracenylporphyrin (TMPAP), tetranaphthylanthracenylporphyrin (TNAP) and tetrapyrenylanthracenylporphyrin (TPyAP). Optical characterisations of these modified porphyrins showed, in most cases, only emission of the porphyrin in the visible region with extinction of the fluorescence of PAHs in the UV or visible region.

14.
Nanotechnology ; 29(32): 325701, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29757161

RESUMO

In this study, we introduce an efficient data sorting algorithm, including filters for noisy signals, conductance mapping for analyzing the most dominant conductance group and sub-population groups. The capacity of our data analysis process has also been corroborated on real experimental data sets of Au-1,6-hexanedithiol-Au and Au-1,8-octanedithiol-Au molecular junctions. The fully automated and unsupervised program requires less than one minute on a standard PC to sort the data and generate histograms. The resulting one-dimensional and two-dimensional log histograms give conductance values in good agreement with previous studies. Our algorithm is a straightforward, fast and user-friendly tool for single molecule charge transport data analysis. We also analyze the data in a form of a conductance map which can offer evidence for diversity in molecular conductance. The code for automatic data analysis is openly available, well-documented and ready to use, thereby offering a useful new tool for single molecule electronics.

15.
Phys Chem Chem Phys ; 20(38): 24553-24560, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29961777

RESUMO

A fully metal-free molecular junction (MJ) has been built by using an electrochemically etched carbon fibre STM tip as the top electrode and graphene as the bottom electrode. The corresponding conductance values for 1,n-alkanediamine and 1,n-alkanedithiol (n = 2, 4, 6, 8 and 10) have been measured using the STM-I(s) technique. The tunnelling decay constant of the alkanediamine and alkanedithiol junctions with these carbon contacts is much lower than the corresponding metal contacted junctions of 0.24 and 0.38 per -CH2 unit, but the junction conductance with these carbon contacts is also lower. The carbon fibre tip can be considered a good candidate as an electrode. Compared with a gold tip, the carbon fibre tip leads to correspondingly lower molecular junction conductance.

16.
Phys Chem Chem Phys ; 19(14): 9485-9499, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28338139

RESUMO

We present a theoretical study of molecular adsorption on defects on a MoS2 monolayer. Based on Density Functional Theory, our calculations confirm that small inorganic molecules, such as CO2, CO, H2O, NO, NO2, H2 and N2, remain bonded to the pristine monolayer through weak van der Waals interactions, suggesting that the molecules may easily diffuse over the clean monolayer. On the other hand, the introduction of defects can lead to three different situations, depending on the defect and the molecule considered: physisorption, chemical (strong) bonding to the metallic defects, namely the Mo substitutional atoms on the S vacancies, and dissociation, that can take place spontaneously at 0 K in some specific cases or by the effect of thermal agitation in molecules such as CO2 or NO2 on the S vacancy. Our energetic and electronic analyses provide an explanation to such bonding possibilities, showing that in the low interacting situations, the molecules tend to adopt a planar configuration parallel to the monolayer, while a molecular rotation is favored in order to facilitate the bond formation on the reactive sites. Finally, the ab initio based Scanning Tunneling Microscopy (STM) simulations show the fingerprint of each molecule adsorbed on the most reactive site. This work opens the way to the possibility of tuning the catalytic properties of MoS2 by controlling the creation of specific defects in the MoS2 monolayer.

17.
Nano Lett ; 16(10): 6534-6540, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27668518

RESUMO

We have measured the single-molecule conductance of 1,n-alkanedithiol molecular bridges (n = 4, 6, 8, 10, 12) on a graphene substrate using scanning tunneling microscopy (STM)-formed electrical junctions. The conductance values of this homologous series ranged from 2.3 nS (n = 12) to 53 nS (n = 4), with a decay constant ßn of 0.40 per methylene (-CH2) group. This result is explained by a combination of density functional theory (DFT) and Keldysh-Green function calculations. The obtained decay, which is much lower than the one obtained for symmetric gold junctions, is related to the weak coupling at the molecule-graphene interface and the electronic structure of graphene. As a consequence, we show that using graphene nonsymmetric junctions and appropriate anchoring groups may lead to a much-lower decay constant and more-conductive molecular junctions at longer lengths.

18.
Nano Lett ; 16(7): 4054-61, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27281693

RESUMO

Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.

19.
Nano Lett ; 15(5): 3552-6, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25871804

RESUMO

Achieving highly spin-polarized electric currents in atomic-scale junctions is of great importance in the field of nanoelectronics and spintronics. Based on robust symmetry considerations, we propose a mechanism to block completely one of spin conduction channels for a broad class of atomic and molecular junctions bridging two ferromagnetic electrodes. This particular behavior is due to the wave function orthogonality between spin up s-like states in ferromagnetic electrode and available π channels in the junction. As a consequence, the system would ideally yield 100% spin-polarized current, with a junction acting thus as a "half-metallic" conductor. Using ab initio electron transport calculations, we demonstrate this principle on two examples: (i) a short carbon chain and (ii) a π-conjugated molecule (polythiophene) connected either to model semi-infinite Ni wires or to realistic Ni(111) electrodes. It is also predicted that such atomic-scale junctions should lead to very high (ideally, infinite) magneto-resistance ratios since the electric current gets fully blocked if two electrodes have antiparallel magnetic alignment.

20.
Nanotechnology ; 26(44): 445702, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26457876

RESUMO

Chemical doping of graphene is a key process for the modulation of its electronic properties and the design and fabrication of graphene-based nanoelectronic devices. Here, we study the adsorption of diluted concentrations of nitric acid (HNO3) onto monolayer graphene/4H-SiC (0001) to induce a variation of the graphene work function (WF). Raman spectroscopy indicates an increase in the defect density subsequent to the doping. Moreover, ultraviolet photoemission spectroscopy (UPS) was utilized to quantify the WF shift. UPS data show that the WF of the graphene layer decreased from 4.3 eV (pristine) down to 3.8 eV (30% HNO3) and then increased to 4.4 eV at 100% HNO3 concentration. These observations were confirmed using density functional theory (DFT) calculations. This straightforward process allows a large WF modulation, rendering the molecularly modified graphene/4H-SiC(0001) a highly suitable electron or hole injection electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA