Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nature ; 596(7871): 238-243, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381233

RESUMO

Structured fabrics, such as woven sheets or chain mail armours, derive their properties both from the constitutive materials and their geometry1,2. Their design can target desirable characteristics, such as high impact resistance, thermal regulation, or electrical conductivity3-5. Once realized, however, the fabrics' properties are usually fixed. Here we demonstrate structured fabrics with tunable bending modulus, consisting of three-dimensional particles arranged into layered chain mails. The chain mails conform to complex shapes2, but when pressure is exerted at their boundaries, the particles interlock and the chain mails jam. We show that, with small external pressure (about 93 kilopascals), the sheets become more than 25 times stiffer than in their relaxed configuration. This dramatic increase in bending resistance arises because the interlocking particles have high tensile resistance, unlike what is found for loose granular media. We use discrete-element simulations to relate the chain mail's micro-structure to macroscale properties and to interpret experimental measurements. We find that chain mails, consisting of different non-convex granular particles, undergo a jamming phase transition that is described by a characteristic power-law function akin to the behaviour of conventional convex media. Our work provides routes towards lightweight, tunable and adaptive fabrics, with potential applications in wearable exoskeletons, haptic architectures and reconfigurable medical supports.


Assuntos
Fenômenos Mecânicos , Têxteis , Exoesqueleto Energizado , Humanos , Maleabilidade , Pressão , Resistência à Tração , Dispositivos Eletrônicos Vestíveis
2.
Proc Natl Acad Sci U S A ; 119(13): e2122185119, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35316137

RESUMO

SignificanceAn invisibility cloak to conceal objects from an outside observer has long been a subject of interest in metamaterial design. While cloaks have been manufactured for optical, thermal, and electric fields, limited progress has been made for mechanical cloaks. Most existing designs rely on mapping-based methods, which have so far been limited to special base cells and a narrow selection of voids with simple shapes. In this study, we develop a fundamentally different approach by exploiting data-driven designs to offer timely, customized solutions to mechanical cloaking that were previously difficult to obtain. Through simulations and experimental validations, we show that excellent cloaking performance can be achieved for various boundary conditions, shapes of voids, base cells, and even multiple voids.

3.
Proc Natl Acad Sci U S A ; 119(15): e2119523119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377816

RESUMO

We present an approach to fabricate biological matrix composites made entirely from cultured plant cells. We utilize the cell's innate ability to synthesize nanofibrillar cell walls, which serve as the composite's fundamental building blocks. Following a controlled compression/dehydration process, the cells arrange into lamellar structures with hierarchical features. We demonstrate that the native cell wall nanofibrils tether adjacent cells together through fibrillar interlocking and intermolecular hydrogen bonding. These interactions facilitate intercellular adhesion and eliminate the need for other binders. Our fabrication process utilizes the entire plant cell, grown in an in vitro culture; requires no harsh chemical treatments or waste-generating extraction or selection processes; and leads to bulk biocomposites that can be produced in situ and biodegrade in soil. The final mechanical properties are comparable to commodity plastics and can be further modulated by introducing filler particles.


Assuntos
Plásticos Biodegradáveis , Células Vegetais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Técnicas de Cultura de Células , Células Cultivadas
4.
Nature ; 564(7735): 229-233, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542167

RESUMO

Guiding waves through a stable physical channel is essential for reliable information transport. However, energy transport in high-frequency mechanical systems, such as in signal-processing applications1, is particularly sensitive to defects and sharp turns because of back-scattering and losses2. Topological phenomena in condensed matter systems have shown immunity to defects and unidirectional energy propagation3. Topological mechanical metamaterials translate these properties into classical systems for efficient phononic energy transport. Acoustic and mechanical topological metamaterials have so far been realized only in large-scale systems, such as arrays of pendulums4, gyroscopic lattices5,6, structured plates7,8 and arrays of rods, cans and other structures acting as acoustic scatterers9-12. To fulfil their potential in device applications, mechanical topological systems need to be scaled to the on-chip level for high-frequency transport13-15. Here we report the experimental realization of topological nanoelectromechanical metamaterials, consisting of two-dimensional arrays of free-standing silicon nitride nanomembranes that operate at high frequencies (10-20 megahertz). We experimentally demonstrate the presence of edge states, and characterize their localization and Dirac-cone-like frequency dispersion. Our topological waveguides are also robust to waveguide distortions and pseudospin-dependent transport. The on-chip integrated acoustic components realized here could be used in unidirectional waveguides and compact delay lines for high-frequency signal-processing applications.

5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431680

RESUMO

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Assuntos
Celulose/biossíntese , Engenharia Química/métodos , Cloroplastos/efeitos da radiação , Glucose/biossíntese , Impressão Tridimensional/instrumentação , Celulose/química , Cloroplastos/química , Cloroplastos/fisiologia , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Glucose/química , Humanos , Isocianatos/química , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Robótica/métodos , Spinacia oleracea/química , Spinacia oleracea/efeitos da radiação
6.
PLoS Comput Biol ; 18(6): e1010171, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737648

RESUMO

Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.


Assuntos
COVID-19 , Epidemias , Aplicativos Móveis , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante , Epidemias/prevenção & controle , Humanos , Cidade de Nova Iorque
7.
Proc Natl Acad Sci U S A ; 116(48): 23960-23965, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712442

RESUMO

Architected materials or metamaterials have proved to be a very effective way of making materials with unusual mechanical properties. For example, by designing the mesoscale geometry of architected materials, it is possible to obtain extremely high stiffness-to-weight ratio or unusual Poisson's ratio. However, much of this work has focused on designing properties like stiffness and density, and much remains unknown about the critical load to failure. This is the focus of the current work. We show that the addition of local internal prestress in selected regions of architected materials enables the design of materials where the critical load to failure can be optimized independently from the density and/or quasistatic stiffness. We propose a method to optimize the specific load to failure and specific stiffness using sensitivity analysis and derive the maximum bounds on the attainable properties. We demonstrate the method in a 2D triangular lattice and a 3D octahedral truss, showing excellent agreement between experimental and theoretical results. The method can be used to design materials with predetermined fracture load, failure location, and fracture paths.

8.
Proc Natl Acad Sci U S A ; 115(22): 5698-5702, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29765000

RESUMO

In most macroscale robotic systems, propulsion and controls are enabled through a physical tether or complex onboard electronics and batteries. A tether simplifies the design process but limits the range of motion of the robot, while onboard controls and power supplies are heavy and complicate the design process. Here, we present a simple design principle for an untethered, soft swimming robot with preprogrammed, directional propulsion without a battery or onboard electronics. Locomotion is achieved by using actuators that harness the large displacements of bistable elements triggered by surrounding temperature changes. Powered by shape memory polymer (SMP) muscles, the bistable elements in turn actuate the robot's fins. Our robots are fabricated using a commercially available 3D printer in a single print. As a proof of concept, we show the ability to program a vessel, which can autonomously deliver a cargo and navigate back to the deployment point.

9.
Proc Natl Acad Sci U S A ; 114(18): 4603-4606, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416663

RESUMO

The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations.

10.
Proc Natl Acad Sci U S A ; 114(46): 12150-12155, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087329

RESUMO

Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (V approximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as "billiard balls" in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder.

11.
Nat Mater ; 17(4): 323-328, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29335611

RESUMO

Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.

12.
Proc Natl Acad Sci U S A ; 113(30): 8386-90, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27410042

RESUMO

Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

13.
Proc Natl Acad Sci U S A ; 113(35): 9722-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519797

RESUMO

Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.

14.
Phys Rev Lett ; 120(20): 205501, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864363

RESUMO

Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

15.
Phys Rev Lett ; 121(19): 194301, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468594

RESUMO

Acoustic waves in a linear time-invariant medium are generally reciprocal; however, reciprocity can break down in a time-variant system. In this Letter, we report on an experimental demonstration of nonreciprocity in a dynamic one-dimensional phononic crystal, where the local elastic properties are dependent on time. The system consists of an array of repelling magnets, and the on-site elastic potentials of the constitutive elements are modulated by an array of electromagnets. The modulation in time breaks time-reversal symmetry and opens a directional band gap in the dispersion relation. As shown by experimental and numerical results, nonreciprocal mechanical systems like the one presented here offer opportunities to create phononic diodes that can serve for rectification applications.

16.
Soft Matter ; 14(48): 9744-9749, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30511736

RESUMO

We investigate the out-of-plane shape morphing capability of single-material elastic sheets with architected cut patterns that result in arrays of tiles connected by flexible hinges. We demonstrate that a non-periodic cut pattern can cause a sheet to buckle into three-dimensional shapes, such as domes or patterns of wrinkles, when pulled at specific boundary points. These global buckling modes are observed in experiments and rationalized by an in-plane kinematic analysis that highlights the role of the geometric frustration arising from non-periodicity. The study focuses on elastic sheets, and is later extended to elastic-plastic materials to achieve shape retention. Our work illustrates a scalable route towards the fabrication of three-dimensional objects with nonzero Gaussian curvature from initially-flat sheets.

17.
Philos Trans A Math Phys Eng Sci ; 376(2127)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30037935

RESUMO

We study frequency conversion in nonlinear mechanical lattices, focusing on a chain of magnets as a model system. We show that, by inserting mass defects at suitable locations, we can introduce localized vibrational modes that nonlinearly couple to extended lattice modes. The nonlinear interaction introduces an energy transfer from the high-frequency localized modes to a low-frequency extended mode. This system is capable of autonomously converting energy between highly tunable input and output frequencies, which need not be related by integer harmonic or subharmonic ratios. It is also capable of obtaining energy from multiple sources at different frequencies with a tunable output phase, due to the defect synchronization provided by the extended mode. Our lattice is a purely mechanical analogue of an opto-mechanical system, where the localized modes play the role of the electromagnetic field and the extended mode plays the role of the mechanical degree of freedom.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

18.
Proc Natl Acad Sci U S A ; 112(15): 4541-5, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825744

RESUMO

Conventional approaches to create biomaterials rely on reverse engineering of biological structures, on biomimicking, and on bioinspiration. Plant nanobionics is a recent approach to engineer new materials combining plant organelles with synthetic nanoparticles to enhance, for example, photosynthesis. Biological structures often outperform man-made materials. For example, higher plants sense temperature changes with high responsivity. However, these properties do not persist after cell death. Here, we permanently stabilize the temperature response of isolated plant cells adding carbon nanotubes (CNTs). Interconnecting cells, we create materials with an effective temperature coefficient of electrical resistance (TCR) of -1,730% K(-1), ∼2 orders of magnitude higher than the best available sensors. This extreme temperature response is due to metal ions contained in the egg-box structure of the pectin backbone, lodged between cellulose microfibrils. The presence of a network of CNTs stabilizes the response of cells at high temperatures without decreasing the activation energy of the material. CNTs also increase the background conductivity, making these materials suitable elements for thermal and distance sensors.


Assuntos
Materiais Biocompatíveis/química , Cálcio/química , Temperatura Alta , Nanotubos de Carbono/química , Pectinas/química , Células Vegetais/química , Materiais Biocompatíveis/metabolismo , Cálcio/metabolismo , Engenharia Celular/métodos , Engenharia Celular/tendências , Linhagem Celular , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Nanotecnologia/tendências , Nanotubos de Carbono/ultraestrutura , Pectinas/metabolismo , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura
19.
J Acoust Soc Am ; 144(1): 319, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30075686

RESUMO

Microlattices are architected materials that allow for an unprecedented control of mechanical properties (e.g., stiffness, density, and Poisson's coefficient). In contrast to their quasi-static mechanical properties, the acoustic properties of microlattices remain largely unexplored. This paper analyzes the acoustic response of periodic millimeter-sized microlattices immersed in water using experiments and numerical simulations. Microlattices are fabricated using high-precision stereolithographic three-dimensional printing in a large variety of porosities and lattice topologies. This paper shows that the acoustic propagation undergoes a frequency dependent transition from a classic poroelastic behaviour that can be described by Biot's theory to a regime that is dominated by scattering effects. Biot's acoustic parameters are derived from direct simulations of the microstructure using coupled fluid and solid finite elements. The wave speeds predicted with Biot's theory agree well with the experimental measures. Within the scattering regime, the signals show a strong attenuation and dispersion, which is characterized by a cut-off frequency. The strong dispersion results in a frequency dependent group velocity. A simplified model of an elastic cylindrical scatterer allows predicting the signal attenuation and dispersion observed experimentally. The results in this paper pave the way for the creation of microlattice materials for the control of ultrasonic waves across a wide range of frequencies.

20.
Nanotechnology ; 28(18): 184002, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28338473

RESUMO

We describe the super compressible and highly recoverable response of bucky sponges as they are struck by a heavy flat-punch striker. The bucky sponges studied here are structurally stable, self-assembled mixtures of multiwalled carbon nanotubes (MWCNTs) and carbon fibers (CFs). We engineered the microstructure of the sponges by controlling their porosity using different CF contents. Their mechanical properties and energy dissipation characteristics during impact loading are presented as a function of their composition. The inclusion of CFs improves the impact force damping by up to 50% and the specific damping capacity by up to 7% compared to bucky sponges without CFs. The sponges also exhibit significantly better stress mitigation characteristics compared to vertically aligned CNT foams of similar densities. We show that delamination occurs at the MWCNT-CF interfaces during unloading, and it arises from the heterogeneous fibrous microstructure of the bucky sponges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA