Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(35): 24230-24239, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28848987

RESUMO

There is great interest in developing promising candidate materials for high-capacity, low cost, environmentally friendly, longer cycle life anodes for lithium ion batteries. Due to better Li adsorption properties than graphene, boron doped graphene has been considered to be an attractive anode material for Li-ion batteries. Using first principles density functional theory calculations, we investigate the effect of increasing boron concentration on the gravimetric capacity of monolayered boron doped carbon sheets. The calculations are performed for uniformly boron doped carbon sheets, BCx (x = 7, 5, 3, 2 and 1) as well as their non-uniformly doped counterparts, which are found to be energetically preferable for x = 5, 2 and 1. Our results indicate pronounced enhancement in gravimetric capacity with increasing concentration of B, up to x = 2. The storage capacity of the uniformly doped BC2 turns out to be the highest ever reported for B doped graphene sheets, which is 1.9 times (1667 mA h g-1) that of the previously reported value for BC3 (J. Phys. Chem. Lett., 2013, 4, 1737-1742). This dramatic increase in the capacity of uniformly doped BC2 occurs because of the availability of significantly more empty states above the Fermi level compared to the other BCx sheets. Moreover, the diffusion energy barriers and open circuit voltage are found to be lower in uniformly doped BC2, leading to better Li kinetics. For x = 1, Li binds very strongly to the uniformly doped BC and higher diffusion energy barriers are found for non-uniformly doped BC, rendering them ineffective as anode materials. Our study reveals that BC2 is the most promising candidate as an anode material for Li ion batteries owing to its high Li storage capacity combined with low diffusion barrier and low open circuit voltage.

2.
Phys Chem Chem Phys ; 16(39): 21688-93, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25197835

RESUMO

The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.

3.
Phys Chem Chem Phys ; 16(31): 16502-8, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24986702

RESUMO

Graphene with large surface area and robust structure has been proposed as a high storage capacity anode material for Li ion batteries. While the inertness of pristine graphene leads to better Li kinetics, poor adsorption leads to Li clustering, significantly affecting the performance of the battery. Here, we show the role of defects and doping in achieving enhanced adsorption without compromising on the high diffusivity of Li. Using first principles density functional theory (DFT) calculations, we carry out a comprehensive study of diffusion kinetics of Li over the plane of the defective structures and calculate the change in the number of Li atoms in the vicinity of defects, with respect to pristine graphene. Our results show that the Li-C interaction, storage capacity and the energy barriers depend sensitively on the type of defects. The un-doped and boron doped mono-vacancy, doped di-vacancy up to two boron, one nitrogen doped di-vacancy, and Stone-Wales defects show low energy barriers that are comparable to pristine graphene. Furthermore, boron doping at mono-vacancy enhances the adsorption of Li. In particular, the two boron doped mono-vacancy graphene shows both a low energy barrier of 0.31 eV and better adsorption, and hence can be considered as a potential candidate for anode material.

4.
Phys Chem Chem Phys ; 15(36): 15128-34, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23925460

RESUMO

We investigate the effect of nitrogen and boron doping on Li diffusion through defected graphene using first principles based density functional theory. While a high energy barrier rules out the possibility of Li- diffusion through the pristine graphene, the barrier reduces with the incorporation of defects. Among the most common defects in pristine graphene, Li diffusion through the divacancy encounters the lowest energy barrier of 1.34 eV. The effect of nitrogen and boron doping on the Li diffusion through doped defected-graphene sheets has been studied. N-doping in graphene with a monovacancy reduces the energy barrier significantly. The barrier reduces with the increasing number of N atoms. On the other hand, for N doped graphene with a divacancy, Li binds in the plane of the sheet, with an enhanced binding energy. The B doping in graphene with a monovacancy leads to the enhancement of the barrier. However, in the case of B-doped graphene with a divacancy, the barrier reduces to 1.54 eV, which could lead to good kinetics. The barriers do not change significantly with B concentration. Therefore, divacancy, B and N doped defected graphene has emerged as a better alternative to pristine graphene as an anode material for Li ion battery.

5.
Adv Mater ; 30(44): e1803366, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30239044

RESUMO

The transformation from semiconducting to metallic phase, accompanied by a structural transition in 2D transition metal dichalcogenides has attracted the attention of the researchers worldwide. The unconventional structural transformation of fluorinated WS2 (FWS2 ) into the 1T phase is described. The energy difference between the two phases debugs this transition, as fluorination enhances the stability of 1T FWS2 and makes it energetically favorable at higher F concentration. Investigation of the electronic and optical nature of FWS2 is supplemented by possible band structures and bandgap calculations. Magnetic centers in the 1T phase appear in FWS2 possibly due to the introduction of defect sites. A direct consequence of the phase transition and associated increase in interlayer spacing is a change in friction behavior. Friction force microscopy is used to determine this effect of functionalization accompanied phase transformation.

6.
Sci Adv ; 3(7): e1700842, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740867

RESUMO

We report the fluorination of electrically insulating hexagonal boron nitride (h-BN) and the subsequent modification of its electronic band structure to a wide bandgap semiconductor via introduction of defect levels. The electrophilic nature of fluorine causes changes in the charge distribution around neighboring nitrogen atoms in h-BN, leading to room temperature weak ferromagnetism. The observations are further supported by theoretical calculations considering various possible configurations of fluorinated h-BN structure and their energy states. This unconventional magnetic semiconductor material could spur studies of stable two-dimensional magnetic semiconductors. Although the high thermal and chemical stability of h-BN have found a variety of uses, this chemical functionalization approach expands its functionality to electronic and magnetic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA