Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904619

RESUMO

We discuss the effect of topological inhomogeneity of very thin metallic conductometric sensors on their response to external stimuli, such as pressure, intercalation, or gas absorption, that modify the material's bulk conductivity. The classical percolation model was extended to the case in which several independent scattering mechanisms contribute to resistivity. The magnitude of each scattering term was predicted to grow with the total resistivity and diverge at the percolation threshold. We tested the model experimentally using thin films of hydrogenated palladium and CoPd alloys where absorbed hydrogen atoms occupying the interstitial lattice sites enhance the electron scattering. The hydrogen scattering resistivity was found to grow linearly with the total resistivity in the fractal topology range in agreement with the model. Enhancement of the absolute magnitude of the resistivity response in the fractal range thin film sensors can be particularly useful when the respective bulk material response is too small for reliable detection.

2.
Molecules ; 25(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784683

RESUMO

Hydrogen can penetrate reversibly a number of metals, occupy the interstitial sites and cause large expansion of the crystal lattice. The question discussed here is whether the kinetics of the structural response matches hydrogen absorption. We show that thin Pd and CoPd films exposed to a relatively rich hydrogen atmosphere (4% H2) inflate irreversibly, demonstrate the controllable shape memory, and duration of the process can be of orders of magnitude longer than hydrogen absorption. The dynamics of the out-of-equilibrium plastic creep are well described by the Avrami-type model of the nucleation and lateral domain wall expansion of the swelled sites.


Assuntos
Absorção Fisico-Química , Ligas/química , Cobalto/química , Hidrogênio/química , Paládio/química , Atmosfera/química , Cinética
3.
Materials (Basel) ; 15(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009264

RESUMO

Palladium satisfies most of the requirements for an effective hydrogen storage material with two major drawbacks: it has a relatively low gravimetric hydrogen density and is prohibitively expensive for large scale applications. Pd-based alloys should be considered as possible alternatives to a pure Pd. The question is how much one can dilute the Pd concentration in a variety of candidate materials while preserving the hydrogen absorption capability. We demonstrate that the resistivity measurements of thin film alloy samples can be used for a qualitative high-throughput screening and study of the hydrogen absorbing properties over the entire range of palladium concentrations. Contrary to palladium-rich alloys where additional hydrogen scattering indicates a degree of hydrogen content, the diluted alloy films respond by a decrease in resistance due to their thickness expansion. Evidence of significant hydrogen absorption was found in thin CoPd films diluted to just 20% of Pd.

4.
RSC Adv ; 10(56): 34266-34275, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35519045

RESUMO

We present a comprehensive study on the magnetization reversal in the Fe/NiFe bilayer system by alternating the order of the magnetic layers. All the samples show growth-induced uniaxial magnetic anisotropy due to the oblique angle deposition technique. Strong interfacial exchange coupling between the Fe and NiFe layers leads to single-phase hysteresis loops in the bilayer system. The strength of coupling being dependent on the interface changes upon alternating the order of magnetic layers. The magnetic parameters such as coercivity H C, and anisotropy field H K become almost doubled when a NiFe layer is grown over the Fe layers. This enhancement in the magnetic parameters is primarily dependent on the increase of the thickness and magnetic moment of the Fe-NiFe interfacial layer as revealed from the polarized neutron reflectivity (PNR) data of the bilayer samples. The difference in the thickness and magnetization of the Fe-NiFe interfacial layer indicates the modification of the microstructure by alternating the order of the magnetic layers of the bilayers. The interfacial magnetic moment increased by almost 18% when the NiFe layer was grown over the Fe layer. In spite of the different values of anisotropy fields and modified interfacial exchange coupling, the Gilbert damping constant values of the ferromagnetic bilayers remain similar to the single NiFe layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA