Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mutat ; 38(1): 105-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701793

RESUMO

The 11p15 region harbors the IGF2/H19 imprinted domain, implicated in fetal and postnatal growth. Silver-Russell syndrome (SRS) is characterized by fetal and postnatal growth failure, and is caused principally by hypomethylation of the 11p15 imprinting control region 1 (ICR1). However, the mechanisms leading to ICR1 hypomethylation remain unknown. Maternally inherited genetic defects affecting the ICR1 domain have been associated with ICR1 hypermethylation and Beckwith-Wiedemann syndrome (an overgrowth syndrome, the clinical and molecular mirror of SRS), and paternal deletions of IGF2 enhancers have been detected in four SRS patients. However, no paternal deletions of ICR1 have ever been associated with hypomethylation of the IGF2/H19 domain in SRS. We screened for new genetic defects within the ICR1 in a cohort of 234 SRS patients with hypomethylated IGF2/H19 domain. We report deletions close to the boundaries of ICR1 on the paternal allele in one familial and two sporadic cases of SRS with ICR1 hypomethylation. These deletions are associated with hypomethylation of the remaining CBS, and decreased IGF2 expression. These results suggest that these regions are most likely required to maintain methylation after fertilization. We estimate these anomalies to occur in about 1% of SRS cases with ICR1 hypomethylation.


Assuntos
Cromossomos Humanos Par 11 , Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Deleção de Sequência , Síndrome de Silver-Russell/genética , Pré-Escolar , Feminino , Fibroblastos , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Linhagem
2.
Hum Mol Genet ; 23(21): 5763-73, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916376

RESUMO

Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/metabolismo , Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/metabolismo , Sequência de Bases , Síndrome de Beckwith-Wiedemann/diagnóstico , Sítios de Ligação , Estudos de Casos e Controles , Cromossomos Humanos Par 11 , Feminino , Frequência do Gene , Heterozigoto , Humanos , Masculino , Mutação , Motivos de Nucleotídeos , Linhagem , Fenótipo , Deleção de Sequência
3.
J Med Genet ; 52(1): 53-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395389

RESUMO

BACKGROUND: The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. METHODS: We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. RESULTS: The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. CONCLUSIONS: The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus.


Assuntos
Cromossomos Humanos Par 11/genética , Metilação de DNA/genética , Regulação da Expressão Gênica/genética , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Síndrome de Silver-Russell/genética , Sequência de Bases , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Dados de Sequência Molecular , Paris , Análise de Componente Principal , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Sulfitos
4.
Horm Res Paediatr ; 86(3): 206-211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27255538

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome with an increased risk of cancer. Most BWS patients show a molecular defect in the 11p15 region that contains imprinted genes. BWS has been associated with malignant neoplasms during infancy. Descriptions of benign tumors, especially in adult patients, are rarer. METHODS/RESULTS: We report the case of a BWS patient with pituitary adenoma caused by loss of methylation (LOM) at ICR2 (locus CDKN1C/KCNQ1OT1). The patient was referred to an endocrinology unit for suspicion of Cushing's disease due to a history of macroglossia and hemihyperplasia. Biological tests led to the diagnosis of ACTH-dependent hypercortisolism. MRI showed a microadenoma of the pituitary gland, confirming the diagnosis of Cushing's disease. DNA methylation analysis revealed LOM at ICR2 that was in a mosaic state in the patient's leukocytes, but was present in nearly all cells of the pituitary adenoma. The epigenetic defect was associated with a somatic USP8 mutation in the adenoma. CONCLUSION: Pituitary adenoma rarely occurs in patients with BWS. However, BWS should be considered in cases of pituitary adenoma with minor and/or major signs of BWS. The association between ICR2 LOM and USP8 mutation in the adenoma is questionable. © 2016 S. Karger AG, Basel.


Assuntos
Adenoma , Síndrome de Beckwith-Wiedemann , Síndrome de Cushing , Metilação de DNA , Endopeptidases , Complexos Endossomais de Distribuição Requeridos para Transporte , Epigênese Genética , Loci Gênicos , Neoplasias Hipofisárias , Ubiquitina Tiolesterase , Adenoma/genética , Adenoma/metabolismo , Adolescente , Adulto , Síndrome de Beckwith-Wiedemann/complicações , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/metabolismo , Síndrome de Cushing/etiologia , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Humanos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA